Box Module¶
Overview
The freud Box class for simulation boxes. |
Details
The Box
class defines the geometry of a simulation box. The class
natively supports periodicity by providing the fundamental features for
wrapping vectors outside the box back into it.
- class freud.box.Box¶
Bases:
object
The freud Box class for simulation boxes.
This class defines an arbitrary triclinic geometry within which all points are confined. By convention, the freud Box is centered at the origin (
[0, 0, 0]
), with the extent in each dimension described by the half-open interval[-L/2, L/2)
. For more information, see the documentation on boxes and periodic boundary conditions.Also available as
freud.Box
.- Parameters:
Lx (float, optional) – The x-dimension length.
Ly (float, optional) – The y-dimension length.
Lz (float, optional) – The z-dimension length (Default value = 0).
xy (float, optional) – The xy tilt factor (Default value = 0).
xz (float, optional) – The xz tilt factor (Default value = 0).
yz (float, optional) – The yz tilt factor (Default value = 0).
is2D (bool, optional) – Whether the box is 2-dimensional. Uses
Lz == 0
ifNone
. (Default value =None
)
- L¶
Get or set the box lengths along x, y, and z.
- Type:
\(\left(3, \right)\)
numpy.ndarray
- L_inv¶
The inverse box lengths.
- Type:
\(\left(3, \right)\)
numpy.ndarray
- center(self, vecs, masses=None)¶
Subtract center of mass from an array of vectors, using periodic boundaries.
This calculation accounts for periodic images. This Wikipedia page describes the mathematics of this method.
Example:
>>> import freud >>> box = freud.Box.cube(10) >>> points = [[-1, -1, 0], [-1, 1, 0], [2, 0, 0]] >>> box.center(points) array([[-0.8154068, -1.0000002, 0. ], [-0.8154068, 1. , 0. ], [ 2.1845937, 0. , 0. ]], dtype=float32)
- Parameters:
vecs (\(\left(N, 3\right)\)
numpy.ndarray
) – Vectors to center.masses (\(\left(N, 3\right)\)
numpy.ndarray
) – Masses corresponding to each vector, defaulting to 1 if not provided orNone
(Default value =None
).
- Returns:
Vectors with center of mass subtracted.
- Return type:
\(\left(N, 3\right)\)
numpy.ndarray
- center_of_mass(self, vecs, masses=None)¶
Compute center of mass of an array of vectors, using periodic boundaries.
This calculation accounts for periodic images. This Wikipedia page describes the mathematics of this method.
Example:
>>> import freud >>> import numpy as np >>> box = freud.Box.cube(10) >>> points = [[-1, -1, 0], [-1, 1, 0], [2, 0, 0]] >>> np.mean(points, axis=0) # Does not account for periodic images array([0., 0., 0.]) >>> box.center_of_mass(points) # Accounts for periodic images array([-0.1845932, 0. , 0. ])
- Parameters:
vecs (\(\left(N, 3\right)\)
numpy.ndarray
) – Vectors used to find center of mass.masses (\(\left(N,\right)\)
numpy.ndarray
) – Masses corresponding to each vector, defaulting to 1 if not provided orNone
(Default value =None
).
- Returns:
Center of mass.
- Return type:
\(\left(3, \right)\)
numpy.ndarray
- compute_all_distances(self, query_points, points)¶
Calculate distances between all pairs of query points and points, using periodic boundaries.
Distances are calculated pairwise, i.e.
distances[i, j]
is the distance fromquery_points[i]
topoints[j]
.- Parameters:
query_points (\(\left(N_{query\_points}, 3 \right)\)
numpy.ndarray
) – Array of query points.points (\(\left(N_{points}, 3 \right)\)
numpy.ndarray
) – Array of points with same length asquery_points
.
- Returns:
Array of distances between query points and points.
- Return type:
\(\left(N_{query\_points}, N_{points}, \right)\)
numpy.ndarray
- compute_distances(self, query_points, points)¶
Calculate distances between two sets of points, using periodic boundaries.
Distances are calculated row-wise, i.e.
distances[i]
is the distance fromquery_points[i]
topoints[i]
.- Parameters:
query_points (\(\left(N, 3\right)\)
numpy.ndarray
) – Array of query points.points (\(\left(N, 3\right)\)
numpy.ndarray
) – Array of points.
- Returns:
Array of distances between query points and points.
- Return type:
\(\left(N, \right)\)
numpy.ndarray
- contains(self, points)¶
Compute a boolean array (mask) corresponding to point membership in a box.
This calculation computes particle membership based on conventions defined by
Box
, ignoring periodicity. This means that in a cubic (3D) box with dimensionsL
, particles would be considered inside the box if their coordinates are between[-L/2, L/2]
. Particles laying at a coordinate such as[0, L, 0]
would be considered outside the box. More information about coordinate conventions can be found in the documentation on Using boxes and periodic boundary conditions.Example:
>>> import freud >>> box = freud.Box.cube(10) >>> points = [[-4, 0, 0], [10, 0, 0], [0, -7, 0]] >>> box.contains(points) array([ True, False, False])
- Parameters:
points (\(\left(N, 3\right)\)
numpy.ndarray
) – Array of points.- Returns:
Array of booleans, where
True
corresponds to points within the box, andFalse
corresponds to points outside the box.- Return type:
\(\left(N, \right)\)
numpy.ndarray
- classmethod cube(cls, L=None)¶
Construct a cubic box with equal lengths.
- Parameters:
L (float) – The edge length
- Returns:
The resulting box object.
- Return type:
- classmethod from_box(cls, box, dimensions=None)¶
Initialize a Box instance from a box-like object.
- Parameters:
box – A box-like object
dimensions (int) – Dimensionality of the box (Default value = None)
Note
Objects that can be converted to freud boxes include lists like
[Lx, Ly, Lz, xy, xz, yz]
, dictionaries with keys'Lx', 'Ly', 'Lz', 'xy', 'xz', 'yz', 'dimensions'
, objects with attributesLx, Ly, Lz, xy, xz, yz, dimensions
, 3x3 matrices (seefrom_matrix()
), or existingfreud.box.Box
objects.If any of
Lz, xy, xz, yz
are not provided, they will be set to 0.If all values are provided, a triclinic box will be constructed. If only
Lx, Ly, Lz
are provided, an orthorhombic box will be constructed. If onlyLx, Ly
are provided, a rectangular (2D) box will be constructed.If the optional
dimensions
argument is given, this will be used as the box dimensionality. Otherwise, the box dimensionality will be detected from thedimensions
of the provided box. If no dimensions can be detected, the box will be 2D ifLz == 0
, and 3D otherwise.- Returns:
The resulting box object.
- Return type:
- classmethod from_box_lengths_and_angles(cls, L1, L2, L3, alpha, beta, gamma, dimensions=None)¶
Construct a box from lengths and angles (in radians).
All the angles provided must be between 0 and \(\pi\).
- Parameters:
L1 (float) – The length of the first lattice vector.
L2 (float) – The length of the second lattice vector.
L3 (float) – The length of the third lattice vector.
alpha (float) – The angle between second and third lattice vector in radians (must be between 0 and \(\pi\)).
beta (float) – The angle between first and third lattice vector in radians (must be between 0 and \(\pi\)).
gamma (float) – The angle between the first and second lattice vector in radians (must be between 0 and \(\pi\)).
dimensions (int) – The number of dimensions (Default value =
None
).
- Returns:
The resulting box object.
- Return type:
- classmethod from_matrix(cls, box_matrix, dimensions=None)¶
Initialize a Box instance from a box matrix.
For more information and the source for this code, see: HOOMD-blue’s box documentation .
- Parameters:
box_matrix (array-like) – A 3x3 matrix or list of lists
dimensions (int) – Number of dimensions (Default value =
None
)
- Returns:
The resulting box object.
- Return type:
- get_box_vector(self, i)¶
Get the box vector with index \(i\).
- Parameters:
i (unsigned int) – Index (\(0 \leq i < d\)) of the box vector, where \(d\) is the box dimension (2 or 3).
- Returns:
Box vector with index \(i\).
- Return type:
\(\left(3, \right)\)
numpy.ndarray
- get_images(self, vecs)¶
Returns the images corresponding to unwrapped vectors.
- Parameters:
vecs (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
) – Coordinates of unwrapped vector(s).- Returns:
Image index vector(s).
- Return type:
\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
- make_absolute(self, fractional_coordinates, out=None)¶
Convert fractional coordinates into absolute coordinates.
- Parameters:
fractional_coordinates (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
) – Fractional coordinate vector(s), between 0 and 1 within parallelepipedal box.out (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
orNone
) – The array in which to place the absolute coordinates. It must be of dtypenumpy.float32
. IfNone
, this function will return a newly allocated array (Default value = None).
- Returns:
Absolute coordinate vector(s). If
out
is provided, a reference to it is returned.- Return type:
\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
- make_fractional(self, absolute_coordinates, out=None)¶
Convert absolute coordinates into fractional coordinates.
- Parameters:
absolute_coordinates (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
) – Absolute coordinate vector(s).out (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
orNone
) – The array in which to place the fractional positions. It must be of dtypenumpy.float32
. IfNone
, this function will return a newly allocated array (Default value = None).
- Returns:
Fractional coordinate vector(s). If
out
is provided, a reference to it is returned.- Return type:
\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
- periodic¶
Get or set the periodicity of the box in each dimension.
- Type:
\(\left(3, \right)\)
numpy.ndarray
- plot(self, title=None, ax=None, image=[0, 0, 0], *args, **kwargs)¶
Plot a
Box
object.- Parameters:
title (str) – Title of the graph. (Default value =
None
).ax (
matplotlib.axes.Axes
) – Axes object to plot. IfNone
, make a new axes and figure object. If plotting a 3D box, the axes must be 3D. (Default value =None
).image (list) – The periodic image location at which to draw the box (Default value =
[0, 0, 0]
).*args – Passed on to
mpl_toolkits.mplot3d.Axes3D.plot()
ormatplotlib.axes.Axes.plot()
.**kwargs – Passed on to
mpl_toolkits.mplot3d.Axes3D.plot()
ormatplotlib.axes.Axes.plot()
.
- classmethod square(cls, L=None)¶
Construct a 2-dimensional (square) box with equal lengths.
- Parameters:
L (float) – The edge length
- Returns:
The resulting box object.
- Return type:
- to_box_lengths_and_angles(self)¶
Return the box lengths and angles.
- Returns:
The box vector lengths and angles in radians \((L_1, L_2, L_3, \alpha, \beta, \gamma)\).
- Return type:
- to_dict(self)¶
Return box as dictionary.
Example:
>>> box = freud.box.Box.cube(L=10) >>> box.to_dict() {'Lx': 10.0, 'Ly': 10.0, 'Lz': 10.0, 'xy': 0.0, 'xz': 0.0, 'yz': 0.0, 'dimensions': 3}
- Returns:
Box parameters
- Return type:
- to_matrix(self)¶
Returns the box matrix (3x3).
Example:
>>> box = freud.box.Box.cube(L=10) >>> box.to_matrix() array([[10., 0., 0.], [ 0., 10., 0.], [ 0., 0., 10.]])
- Returns:
Box matrix
- Return type:
\(\left(3, 3\right)\)
numpy.ndarray
- unwrap(self, vecs, imgs, out=None)¶
Unwrap an array of vectors inside the box back into real space, using an array of image indices that determine how many times to unwrap in each dimension.
- Parameters:
vecs (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
) – Vector(s) to be unwrapped.imgs (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
) – Image indices for vector(s).out (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
orNone
) – The array in which to place the unwrapped vectors. It must be of dtypenumpy.float32
. IfNone
, this function will return a newly allocated array (Default value = None).
- Returns:
Unwrapped vector(s). If
out
is provided, a reference to it is returned.- Return type:
\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
- v1¶
The first box vector \((L_x, 0, 0)\).
- Type:
\((3, )\)
np.ndarray
- v2¶
The second box vector \((xy \times L_y, L_y, 0)\).
- Type:
\((3, )\)
np.ndarray
- v3¶
The third box vector \((xz \times L_z, yz \times L_z, L_z)\).
- Type:
\((3, )\)
np.ndarray
- wrap(self, vecs, out=None)¶
Wrap an array of vectors into the box, using periodic boundaries.
Note
Since the origin of the box is in the center, wrapping is equivalent to applying the minimum image convention to the input vectors.
- Parameters:
vecs (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
) – Unwrapped vector(s).out (\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray
orNone
) – The array in which to place the wrapped vectors. It must be of dtypenumpy.float32
. IfNone
, this function will return a newly allocated array (Default value = None).
- Returns:
Vector(s) wrapped into the box. If
out
is provided, a reference to it is returned.- Return type:
\(\left(3, \right)\) or \(\left(N, 3\right)\)
numpy.ndarray