References

[CPC+11]

Vania Calandrini, Eric Pellegrini, Paolo Calligari, Konrad Hinsen, and Gerald R Kneller. Nmoldyn-interfacing spectroscopic experiments, molecular dynamics simulations and models for time correlation functions. École thématique de la Société Française de la Neutronique, 12:201–232, 2011.

[FB09]

Christopher L. Farrow and Simon J. L. Billinge. Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. Acta Crystallographica Section A, 65(3):232–239, 2009. URL: https://doi.org/10.1107/S0108767309009714, doi:10.1107/S0108767309009714.

[FHND10]

L. Filion, M. Hermes, R. Ni, and M. Dijkstra. Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: a comparison of simulation techniques. The Journal of Chemical Physics, 133(24):244115, Dec 2010. URL: http://dx.doi.org/10.1063/1.3506838, doi:10.1063/1.3506838.

[FSEW21]

Erik Fransson, Mattias Slabanja, Paul Erhart, and Göran Wahnström. Dynasor—a tool for extracting dynamical structure factors and current correlation functions from molecular dynamics simulations. Advanced Theory and Simulations, 4(2):2000240, 2021. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/adts.202000240, doi:https://doi.org/10.1002/adts.202000240.

[HAG15]

Amir Haji-Akbari and Sharon C Glotzer. Strong orientational coordinates and orientational order parameters for symmetric objects. Journal of Physics A: Mathematical and Theoretical, 48(48):485201, Oct 2015. URL: http://dx.doi.org/10.1088/1751-8113/48/48/485201, doi:10.1088/1751-8113/48/48/485201.

[HH16]

Jonathan Higham and Richard H. Henchman. Locally adaptive method to define coordination shell. The Journal of Chemical Physics, 145(8):084108, 2016. URL: https://doi.org/10.1063/1.4961439, doi:10.1063/1.4961439.

[HAN+16]

Michael P. Howard, Joshua A. Anderson, Arash Nikoubashman, Sharon C. Glotzer, and Athanassios Z. Panagiotopoulos. Efficient neighbor list calculation for molecular simulation of colloidal systems using graphics processing units. Computer Physics Communications, 203:45–52, June 2016. doi:10.1016/j.cpc.2016.02.003.

[JJ17]

Matthew L. Jones and Eric Jankowski. Computationally connecting organic photovoltaic performance to atomistic arrangements and bulk morphology. Molecular Simulation, 43(10-11):756–773, 2017. URL: https://doi.org/10.1080/08927022.2017.1296958, doi:10.1080/08927022.2017.1296958.

[KDvAG19]

Andrew S. Karas, Julia Dshemuchadse, Greg van Anders, and Sharon C. Glotzer. Phase behavior and design rules for plastic colloidal crystals of hard polyhedra via consideration of directional entropic forces. Soft Matter, 15:5380–5389, 2019. doi:10.1039/C8SM02643B.

[LD08]

Wolfgang Lechner and Christoph Dellago. Accurate determination of crystal structures based on averaged local bond order parameters. The Journal of Chemical Physics, 129(11):114707, Sep 2008. URL: http://dx.doi.org/10.1063/1.2977970, doi:10.1063/1.2977970.

[LP16]

Hongjun Liu and Stephen J. Paddison. Direct calculation of the x-ray structure factor of ionic liquids. Phys. Chem. Chem. Phys., 18:11000–11007, 2016. URL: https://dx.doi.org/10.1039/C5CP06199G, doi:10.1039/C5CP06199G.

[MKSTM13]

Walter Mickel, Sebastian C. Kapfer, Gerd E. Schröder-Turk, and Klaus Mecke. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. The Journal of Chemical Physics, 138(4):044501, 2013. URL: https://doi.org/10.1063/1.4774084, arXiv:arXiv:1209.6180, doi:10.1063/1.4774084.

[Ryc09]

Chris Rycroft. Voro++: a three-dimensional voronoi cell library in c++. Technical Report, Lawrence Berkeley National Lab, 1 2009. doi:10.2172/946741.

[Ste83]

Paul J. Steinhardt. Bond-orientational order in liquids and glasses. Physical Review B, 28(2):784–805, 1983. doi:10.1103/PhysRevB.28.784.

[TvAG19]

Erin G. Teich, Greg van Anders, and Sharon C. Glotzer. Identity crisis in alchemical space drives the entropic colloidal glass transition. Nature Communications, 10:1–10, 12 2019. URL: https://doi.org/10.1038/s41467-018-07977-2, doi:10.1038/s41467-018-07977-2.

[tW95]

Pieter Rein ten Wolde. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Physical Review Letters, 75(14):2714–2717, 1995. doi:10.1103/PhysRevLett.75.2714.

[vAAS+13]

Greg van Anders, N. Khalid Ahmed, Ross Smith, Michael Engel, and Sharon C. Glotzer. Entropically patchy particles: engineering valence through shape entropy. ACS Nano, 8(1):931–940, Dec 2013. URL: http://dx.doi.org/10.1021/nn4057353, doi:10.1021/nn4057353.

[vAKA+14]

Greg van Anders, Daphne Klotsa, N. Khalid Ahmed, Michael Engel, and Sharon C. Glotzer. Understanding shape entropy through local dense packing. PNAS; Proceedings of the National Academy of Sciences, 111(45):E4812–E4821, 2014.

[vMFVF12]

Jacobus A. van Meel, Laura Filion, Chantal Valeriani, and Daan Frenkel. A parameter-free, solid-angle based, nearest-neighbor algorithm. The Journal of Chemical Physics, 136(23):234107, 2012. URL: https://doi.org/10.1063/1.4729313, doi:10.1063/1.4729313.

[VymvetalVondravsek11]

Jiří Vymětal and Jiří Vondrášek. Gyration- and inertia-tensor-based collective coordinates for metadynamics. application on the conformational behavior of polyalanine peptides and trp-cage folding. Journal of Physical Chemistry A, 115(41):11455–11465, 2011. URL: https://pubs.acs.org/doi/full/10.1021/jp2065612, doi:https://doi.org/10.1021/jp2065612.

[Wie12]

Thomas Wieder. The debye scattering formula in n dimensions. Journal of Mathematical and Computational Sciences, 2:1086–1090, 2012. URL: https://www.scik.org/index.php/jmcs/article/viewFile/263/120.