PMFT Module¶
The PMFT Module allows for the calculation of the Potential of Mean Force and Torque (PMFT) [Cit2] in a number of different coordinate systems.
Note
the coordinate system in which the calculation is performed is not the same as the coordinate system in which particle positions and orientations should be supplied; only certain coordinate systems are available for certain particle positions and orientations:
- 2D particle coordinates (position: [x, y, 0], orientation: \(\theta\)):
- X, Y
- X, Y, \(\theta_2\)
- \(r\), \(\theta_1\), \(\theta_2\)
- 3D particle coordinates -> X, Y, Z
Coordinate System: \(x\), \(y\), \(\theta_2\)¶
-
class
freud.pmft.
PMFTXYT
(x_max, y_max, n_x, n_y, n_t)¶ Computes the PMFT [Cit2] for a given set of points.
A given set of reference points is given around which the PCF is computed and averaged in a sea of data points. Computing the PCF results in a pcf array listing the value of the PCF at each given \(x\), \(y\), \(\theta\) listed in the x, y, and t arrays.
The values of x, y, t to compute the pcf at are controlled by x_max, y_max and n_bins_x, n_bins_y, n_bins_t parameters to the constructor. x_max, y_max determine the minimum/maximum x, y values (\(\min \left( \theta \right) = 0\), (\(\max \left( \theta \right) = 2\pi\)) at which to compute the pcf and n_bins_x, n_bins_y, n_bins_t is the number of bins in x, y, t.
Note
2D: This calculation is defined for 2D systems only. However particle positions are still required to be (x, y, 0)
Module author: Eric Harper <harperic@umich.edu>
Parameters: -
PCF
¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
PMFT
¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
T
¶ Get the array of t-values for the PCF histogram
Returns: bin centers of t-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{\theta}\right)\), dtype=numpy.float32
-
X
¶ Get the array of x-values for the PCF histogram
Returns: bin centers of x-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{x}\right)\), dtype=numpy.float32
-
Y
¶ Get the array of y-values for the PCF histogram
Returns: bin centers of y-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{y}\right)\), dtype=numpy.float32
-
accumulate
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box
) – simulation box - ref_points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – reference points to calculate the local density - ref_orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – angles of reference points to use in calculation - points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – points to calculate the local density - orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – angles of particles to use in calculation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
bin_counts
¶ Get the raw bin counts.
Returns: Bin Counts Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.uint32
-
box
¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function for the given points. Will overwrite the current histogram.
Parameters: - box (
freud.box.Box
) – simulation box - ref_points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – reference points to calculate the local density - ref_orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – angles of reference points to use in calculation - points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – points to calculate the local density - orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – angles of particles to use in calculation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
getBinCounts
(self)¶ Get the raw bin counts.
Returns: Bin Counts Return type: numpy.ndarray
, shape= \(\left(N_{\theta}, N_{y}, N_{x}\right)\), dtype=numpy.uint32
-
getBox
(self)¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box
-
getNBinsT
(self)¶ Get the number of bins in the t-dimension of histogram
Returns: \(N_{\theta}\) Return type: unsigned int
-
getNBinsX
(self)¶ Get the number of bins in the x-dimension of histogram
Returns: \(N_x\) Return type: unsigned int
-
getNBinsY
(self)¶ Get the number of bins in the y-dimension of histogram
Returns: \(N_y\) Return type: unsigned int
-
getPCF
(self)¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{\theta}, N_{y}, N_{x}\right)\), dtype=numpy.float32
-
getPMFT
(self)¶ Get the Potential of Mean Force and Torque.
Returns: PMFT Return type: numpy.ndarray
, shape= \(\left(N_{\theta}, N_{y}, N_{x}\right)\), dtype=numpy.float32
-
getT
(self)¶ Get the array of t-values for the PCF histogram
Returns: bin centers of t-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{\theta}\right)\), dtype=numpy.float32
-
getX
(self)¶ Get the array of x-values for the PCF histogram
Returns: bin centers of x-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{x}\right)\), dtype=numpy.float32
-
getY
(self)¶ Get the array of y-values for the PCF histogram
Returns: bin centers of y-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{y}\right)\), dtype=numpy.float32
-
n_bins_T
¶ Get the number of bins in the T-dimension of histogram
Returns: \(N_{\theta}\) Return type: unsigned int
-
n_bins_X
¶ Get the number of bins in the x-dimension of histogram
Returns: \(N_x\) Return type: unsigned int
-
n_bins_Y
¶ Get the number of bins in the y-dimension of histogram
Returns: \(N_y\) Return type: unsigned int
-
reducePCF
(self)¶ Reduces the histogram in the values over N processors to a single histogram. This is called automatically by
freud.pmft.PMFTXYT.getPCF()
.
-
resetPCF
(self)¶ Resets the values of the pcf histograms in memory
-
Coordinate System: \(x\), \(y\)¶
-
class
freud.pmft.
PMFTXY2D
(x_max, y_max, n_x, n_y)¶ Computes the PMFT [Cit2] for a given set of points.
A given set of reference points is given around which the PCF is computed and averaged in a sea of data points. Computing the PCF results in a pcf array listing the value of the PCF at each given \(x\), \(y\) listed in the x and y arrays.
The values of x and y to compute the pcf at are controlled by x_max, y_max, n_x, and n_y parameters to the constructor. x_max and y_max determine the minimum/maximum distance at which to compute the pcf and n_x and n_y are the number of bins in x and y.
Note
2D: This calculation is defined for 2D systems only.
Module author: Eric Harper <harperic@umich.edu>
Parameters: -
PCF
¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
PMFT
¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
X
¶ Get the array of x-values for the PCF histogram
Returns: bin centers of x-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{x}\right)\), dtype=numpy.float32
-
Y
¶ Get the array of y-values for the PCF histogram
Returns: bin centers of y-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{y}\right)\), dtype=numpy.float32
-
accumulate
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box
) – simulation box - ref_points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – reference points to calculate the local density - ref_orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – orientations of reference points to use in calculation - points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – points to calculate the local density - orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – orientations of particles to use in calculation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
bin_counts
¶ Get the raw bin counts.
Returns: Bin Counts Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.uint32
-
box
¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function for the given points. Will overwrite the current histogram.
Parameters: - box (
freud.box.Box
) – simulation box - ref_points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – reference points to calculate the local density - ref_orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – orientations of reference points to use in calculation - points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – points to calculate the local density - orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – orientations of particles to use in calculation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
getBinCounts
(self)¶ Get the raw bin counts (non-normalized).
Returns: Bin Counts Return type: numpy.ndarray
, shape= \(\left(N_{y}, N_{x}\right)\), dtype=numpy.uint32
-
getBox
(self)¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box
-
getNBinsX
(self)¶ Get the number of bins in the x-dimension of histogram
Returns: \(N_x\) Return type: unsigned int
-
getNBinsY
(self)¶ Get the number of bins in the y-dimension of histogram
Returns: \(N_y\) Return type: unsigned int
-
getPCF
(self)¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{y}, N_{y}\right)\), dtype=numpy.float32
-
getPMFT
(self)¶ Get the Potential of Mean Force and Torque.
Returns: PMFT Return type: numpy.ndarray
, shape= \(\left(N_{y}, N_{x}\right)\), dtype=numpy.float32
-
getX
(self)¶ Get the array of x-values for the PCF histogram
Returns: bin centers of x-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{x}\right)\), dtype=numpy.float32
-
getY
(self)¶ Get the array of y-values for the PCF histogram
Returns: bin centers of y-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{y}\right)\), dtype=numpy.float32
-
n_bins_X
¶ Get the number of bins in the x-dimension of histogram
Returns: \(N_x\) Return type: unsigned int
-
n_bins_Y
¶ Get the number of bins in the y-dimension of histogram
Returns: \(N_y\) Return type: unsigned int
-
reducePCF
(self)¶ Reduces the histogram in the values over N processors to a single histogram. This is called automatically by
freud.pmft.PMFTXY2D.getPCF()
.
-
resetPCF
(self)¶ Resets the values of the pcf histograms in memory
-
Coordinate System: \(r\), \(\theta_1\), \(\theta_2\)¶
-
class
freud.pmft.
PMFTR12
(r_max, n_r, n_t1, n_t2)¶ Computes the PMFT [Cit2] for a given set of points.
A given set of reference points is given around which the PCF is computed and averaged in a sea of data points. Computing the PCF results in a pcf array listing the value of the PCF at each given \(r\), \(\theta_1\), \(\theta_2\) listed in the r, t1, and t2 arrays.
The values of r, t1, t2 to compute the pcf at are controlled by r_max and nbins_r, nbins_t1, nbins_t2 parameters to the constructor. rmax determines the minimum/maximum r (\(\min \left( \theta_1 \right) = \min \left( \theta_2 \right) = 0\), (\(\max \left( \theta_1 \right) = \max \left( \theta_2 \right) = 2\pi\)) at which to compute the pcf and nbins_r, nbins_t1, nbins_t2 is the number of bins in r, t1, t2.
Note
2D: This calculation is defined for 2D systems only. However particle positions are still required to be (x, y, 0)
Module author: Eric Harper <harperic@umich.edu>
Parameters: - r_max (float) – maximum distance at which to compute the pmft
- n_r (unsigned int) – number of bins in r
- n_t1 (unsigned int) – number of bins in t1
- n_t2 (unsigned int) – number of bins in t2
-
PCF
¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
PMFT
¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
R
¶ Get the array of r-values for the PCF histogram
Returns: bin centers of r-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{r}\right)\), dtype=numpy.float32
-
T1
¶ Get the array of T1-values for the PCF histogram
Returns: bin centers of T1-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{\theta1}\right)\), dtype=numpy.float32
-
T2
¶ Get the array of T2-values for the PCF histogram
Returns: bin centers of T2-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{\theta1}\right)\), dtype=numpy.float32
-
accumulate
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box
) – simulation box - ref_points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – reference points to calculate the local density - ref_orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – angles of reference points to use in calculation - points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – points to calculate the local density - orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – angles of particles to use in calculation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
bin_counts
¶ Get the raw bin counts.
Returns: Bin Counts Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.uint32
-
box
¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function for the given points. Will overwrite the current histogram.
Parameters: - box (
freud.box.Box
) – simulation box - ref_points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – reference points to calculate the local density - ref_orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – angles of reference points to use in calculation - points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – points to calculate the local density - orientations (
numpy.ndarray
, shape= \(\left(N_{particles}\right)\), dtype=numpy.float32
) – angles of particles to use in calculation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
getBinCounts
(self)¶ Get the raw bin counts.
Returns: Bin Counts Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.uint32
-
getBox
(self)¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
getInverseJacobian
(self)¶ Get the inverse jacobian used in the pmft
Returns: Inverse Jacobian Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
getNBinsR
(self)¶ Get the number of bins in the r-dimension of histogram
Returns: \(N_r\) Return type: unsigned int
-
getNBinsT1
(self)¶ Get the number of bins in the T1-dimension of histogram
Returns: \(N_{\theta_1}\) Return type: unsigned int
-
getNBinsT2
(self)¶ Get the number of bins in the T2-dimension of histogram
Returns: \(N_{\theta_2}\) Return type: unsigned int
-
getPCF
(self)¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
getPMFT
(self)¶ Get the Potential of Mean Force and Torque.
Returns: PMFT Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
getR
(self)¶ Get the array of r-values for the PCF histogram
Returns: bin centers of r-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{r}\right)\), dtype=numpy.float32
-
getT1
(self)¶ Get the array of T1-values for the PCF histogram
Returns: bin centers of T1-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{\theta1}\right)\), dtype=numpy.float32
-
getT2
(self)¶ Get the array of T2-values for the PCF histogram
Returns: bin centers of T2-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{\theta2}\right)\), dtype=numpy.float32
-
inverse_jacobian
¶ Get the array of T2-values for the PCF histogram
Returns: bin centers of T2-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{\theta1}\right)\), dtype=numpy.float32
-
n_bins_T1
¶ Get the number of bins in the T1-dimension of histogram
Returns: \(N_{\theta_1}\) Return type: unsigned int
-
n_bins_T2
¶ Get the number of bins in the T2-dimension of histogram
Returns: \(N_{\theta_2}\) Return type: unsigned int
-
n_bins_r
¶ Get the number of bins in the r-dimension of histogram
Returns: \(N_r\) Return type: unsigned int
-
reducePCF
(self)¶ Reduces the histogram in the values over N processors to a single histogram. This is called automatically by
freud.pmft.PMFTR12.getPCF()
.
-
resetPCF
(self)¶ Resets the values of the pcf histograms in memory
Coordinate System: \(x\), \(y\), \(z\)¶
-
class
freud.pmft.
PMFTXYZ
(x_max, y_max, z_max, n_x, n_y, n_z)¶ Computes the PMFT [Cit2] for a given set of points.
A given set of reference points is given around which the PCF is computed and averaged in a sea of data points. Computing the PCF results in a pcf array listing the value of the PCF at each given \(x\), \(y\), \(z\), listed in the x, y, and z arrays.
The values of x, y, z to compute the pcf at are controlled by x_max, y_max, z_max, n_x, n_y, and n_z parameters to the constructor. x_max, y_max, and z_max determine the minimum/maximum distance at which to compute the pcf and n_x, n_y, n_z is the number of bins in x, y, z.
Note
3D: This calculation is defined for 3D systems only.
Module author: Eric Harper <harperic@umich.edu>
Parameters: - x_max (float) – maximum x distance at which to compute the pmft
- y_max (float) – maximum y distance at which to compute the pmft
- z_max (float) – maximum z distance at which to compute the pmft
- n_x (unsigned int) – number of bins in x
- n_y (unsigned int) – number of bins in y
- n_z (unsigned int) – number of bins in z
- shiftvec (list) – vector pointing from [0,0,0] to the center of the pmft
-
PCF
¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
PMFT
¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.float32
-
X
¶ Get the array of x-values for the PCF histogram
Returns: bin centers of x-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{x}\right)\), dtype=numpy.float32
-
Y
¶ Get the array of y-values for the PCF histogram
Returns: bin centers of y-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{y}\right)\), dtype=numpy.float32
-
Z
¶ Get the array of z-values for the PCF histogram
Returns: bin centers of z-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{y}\right)\), dtype=numpy.float32
-
accumulate
(self, box, ref_points, ref_orientations, points, orientations, face_orientations=None, nlist=None)¶ Calculates the positional correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box
) – simulation box - ref_points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – reference points to calculate the local density - ref_orientations (
numpy.ndarray
, shape= \(\left(N_{particles}, 4\right)\), dtype=numpy.float32
) – orientations of reference points to use in calculation - points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – points to calculate the local density - orientations (
numpy.ndarray
, shape= \(\left(N_{particles}, 4\right)\), dtype=numpy.float32
) – orientations of particles to use in calculation - face_orientations (
numpy.ndarray
, shape= \(\left( \left(N_{particles}, \right), N_{faces}, 4\right)\), dtype=numpy.float32
) – Optional - orientations of particle faces to account for particle symmetry. * If not supplied by user, unit quaternions will be supplied. * If a 2D array of shape (\(N_f\), \(4\)) or a 3D array of shape (1, \(N_f\), \(4\)) is supplied, the supplied quaternions will be broadcast for all particles
- box (
-
bin_counts
¶ Get the raw bin counts.
Returns: Bin Counts Return type: numpy.ndarray
, shape= \(\left(N_{r}, N_{\theta1}, N_{\theta2}\right)\), dtype=numpy.uint32
-
box
¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
compute
(self, box, ref_points, ref_orientations, points, orientations, face_orientations, nlist=None)¶ Calculates the positional correlation function for the given points. Will overwrite the current histogram.
Parameters: - box (
freud.box.Box
) – simulation box - ref_points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – reference points to calculate the local density - ref_orientations (
numpy.ndarray
, shape= \(\left(N_{particles}, 4\right)\), dtype=numpy.float32
) – orientations of reference points to use in calculation - points (
numpy.ndarray
, shape= \(\left(N_{particles}, 3\right)\), dtype=numpy.float32
) – points to calculate the local density - orientations (
numpy.ndarray
, shape= \(\left(N_{particles}, 4\right)\), dtype=numpy.float32
) – orientations of particles to use in calculation - face_orientations (
numpy.ndarray
, shape= \(\left( \left(N_{particles}, \right), N_{faces}, 4\right)\), dtype=numpy.float32
) – orientations of particle faces to account for particle symmetry - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
getBinCounts
(self)¶ Get the raw bin counts.
Returns: Bin Counts Return type: numpy.ndarray
, shape= \(\left(N_{z}, N_{y}, N_{x}\right)\), dtype=numpy.uint32
-
getBox
(self)¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box
-
getNBinsX
(self)¶ Get the number of bins in the x-dimension of histogram
Returns: \(N_x\) Return type: unsigned int
-
getNBinsY
(self)¶ Get the number of bins in the y-dimension of histogram
Returns: \(N_y\) Return type: unsigned int
-
getNBinsZ
(self)¶ Get the number of bins in the z-dimension of histogram
Returns: \(N_z\) Return type: unsigned int
-
getPCF
(self)¶ Get the positional correlation function.
Returns: PCF Return type: numpy.ndarray
, shape= \(\left(N_{z}, N_{y}, N_{x}\right)\), dtype=numpy.float32
-
getPMFT
(self)¶ Get the Potential of Mean Force and Torque.
Returns: PMFT Return type: numpy.ndarray
, shape= \(\left(N_{z}, N_{y}, N_{x}\right)\), dtype=numpy.float32
-
getX
(self)¶ Get the array of x-values for the PCF histogram
Returns: bin centers of x-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{x}\right)\), dtype=numpy.float32
-
getY
(self)¶ Get the array of y-values for the PCF histogram
Returns: bin centers of y-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{y}\right)\), dtype=numpy.float32
-
getZ
(self)¶ Get the array of z-values for the PCF histogram
Returns: bin centers of z-dimension of histogram Return type: numpy.ndarray
, shape= \(\left(N_{z}\right)\), dtype=numpy.float32
-
n_bins_X
¶ Get the number of bins in the x-dimension of histogram
Returns: \(N_x\) Return type: unsigned int
-
n_bins_Y
¶ Get the number of bins in the y-dimension of histogram
Returns: \(N_y\) Return type: unsigned int
-
n_bins_Z
¶ Get the number of bins in the z-dimension of histogram
Returns: \(N_z\) Return type: unsigned int
-
reducePCF
(self)¶ Reduces the histogram in the values over N processors to a single histogram. This is called automatically by
freud.pmft.PMFTXYZ.getPCF()
.
-
resetPCF
(self)¶ Resets the values of the pcf histograms in memory