Bond Module¶
The bond modules allows for the computation of bonds as defined by a map. Depending on the coordinate system desired, either a two or three dimensional array is supplied, with each element containing the bond index mapped to the pair geometry of that element. The user provides a list of indices to track, so that not all bond indices contained in the bond map need to be tracked in computation.
The bonding module is designed to take in arrays using the same coordinate systems in the PMFT Module in freud.
Note
the coordinate system in which the calculation is performed is not the same as the coordinate system in which particle positions and orientations should be supplied; only certain coordinate systems are available for certain particle positions and orientations:
- 2D particle coordinates (position: [\(x\), \(y\), \(0\)], orientation: \(\theta\)):
- \(X\), \(Y\)
- \(X\), \(Y\), \(\theta_2\)
- \(r\), \(\theta_1\), \(\theta_2\)
- 3D particle coordinates -> \(X\), \(Y\), \(Z\)
Bonding Analysis¶
-
class
freud.bond.
BondingAnalysis
(num_particles, num_bonds)¶ Analyze the bonds as calculated by freud’s Bonding modules.
Determines the bond lifetimes and flux present in the system.
Module author: Eric Harper <harperic@umich.edu>
Parameters: - num_particles (unsigned int) – number of particles over which to calculate bonds
- num_bonds – number of bonds to track
-
bond_lifetimes
¶ return – lifetime of bonds :rtype:
numpy.ndarray
, shape=(\(N_{particles}\), varying), dtype=numpy.uint32
-
compute
(self, frame_0, frame_1)¶ Calculates the changes in bonding states from one frame to the next.
Parameters: - frame_0 (
numpy.ndarray
shape=(\(N_{particles}\), \(N_{bonds}\)), dtype=numpy.uint32
) – current/previous bonding frame (as output fromBondingR12
modules) - frame_1 (
numpy.ndarray
shape=(\(N_{particles}\), \(N_{bonds}\)), dtype=numpy.uint32
) – next/current bonding frame (as output fromBondingR12
modules)
- frame_0 (
-
getBondLifetimes
(self)¶ Returns: lifetime of bonds Return type: numpy.ndarray
, shape=(\(N_{particles}\), varying), dtype=numpy.uint32
-
getNumBonds
(self)¶ Get number of bonds tracked
Returns: number of bonds Return type: unsigned int
-
getNumFrames
(self)¶ Get number of frames calculated
Returns: number of frames Return type: unsigned int
-
getNumParticles
(self)¶ Get number of particles being tracked
Returns: number of particles Return type: unsigned int
-
getOverallLifetimes
(self)¶ Returns: lifetime of bonds Return type: numpy.ndarray
, shape=(\(N_{particles}\), varying), dtype=numpy.uint32
-
getTransitionMatrix
(self)¶ Returns: transition matrix Return type: numpy.ndarray
-
initialize
(self, frame_0)¶ Calculates the changes in bonding states from one frame to the next.
Parameters: frame_0 ( numpy.ndarray
, shape=(\(N_{particles}\), \(N_{bonds}\)), dtype=numpy.uint32
) – first bonding frame (as output fromBondingR12
modules)
-
num_bonds
¶ Get number of bonds being tracked
Returns: number of bonds Return type: unsigned int
-
num_frames
¶ Get number of frames calculated
Returns: number of frames Return type: unsigned int
-
num_particles
¶ Get number of particles being tracked
Returns: number of particles Return type: unsigned int
-
overall_lifetimes
¶ return – lifetime of bonds :rtype:
numpy.ndarray
, shape=(\(N_{particles}\), varying), dtype=numpy.uint32
-
transition_matrix
¶ return – transition matrix :rtype:
numpy.ndarray
Coordinate System: \(x\), \(y\)¶
-
class
freud.bond.
BondingXY2D
(x_max, y_max, bond_map, bond_list)¶ Compute the bonds each particle in the system.
For each particle in the system determine which other particles are in which bonding sites.
Module author: Eric Harper <harperic@umich.edu>
Parameters: - x_max (float) – maximum x distance at which to search for bonds
- y_max (float) – maximum y distance at which to search for bonds
- bond_map (
numpy.ndarray
) – 3D array containing the bond index for each x, y coordinate - bond_list (
numpy.ndarray
) – list containing the bond indices to be tracked bond_list[i] = bond_index
-
bonds
¶ return – particle bonds :rtype:
numpy.ndarray
-
box
¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box()
) – simulation box - ref_points (
numpy.ndarray
, shape=(\(N_{particles}\), 3), dtype=numpy.float32
) – points to calculate the bonding - ref_orientations (
numpy.ndarray
, shape=(\(N_{particles}\)), dtype=numpy.float32
) – orientations as angles to use in computation - points (
numpy.ndarray
, shape=(\(N_{particles}\), 3), dtype=numpy.float32
) – points to calculate the bonding - orientations (
numpy.ndarray
, shape=(\(N_{particles}\)), dtype=numpy.float32
) – orientations as angles to use in computation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
getBonds
(self)¶ Returns: particle bonds Return type: numpy.ndarray
-
getBox
(self)¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
getListMap
(self)¶ Get the dict used to map list idx to bond idx
Returns: list_map Return type: dict >>> list_idx = list_map[bond_idx]
-
getRevListMap
(self)¶ Get the dict used to map list idx to bond idx
Returns: list_map Return type: dict >>> bond_idx = list_map[list_idx]
Coordinate System: \(x\), \(y\), \(\theta_2\)¶
-
class
freud.bond.
BondingXYT
(x_max, y_max, bond_map, bond_list)¶ Compute the bonds each particle in the system.
For each particle in the system determine which other particles are in which bonding sites.
Module author: Eric Harper <harperic@umich.edu>
Parameters: - x_max (float) – maximum x distance at which to search for bonds
- y_max (float) – maximum y distance at which to search for bonds
- bond_map (
numpy.ndarray
) – 3D array containing the bond index for each x, y coordinate - bond_list (
numpy.ndarray
) – list containing the bond indices to be tracked bond_list[i] = bond_index
-
bonds
¶ return – particle bonds :rtype:
numpy.ndarray
-
box
¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box()
) – simulation box - ref_points (
numpy.ndarray
, shape=(\(N_{particles}\), 3), dtype=numpy.float32
) – points to calculate the bonding - ref_orientations (
numpy.ndarray
, shape=(\(N_{particles}\)), dtype=numpy.float32
) – orientations as angles to use in computation - points (
numpy.ndarray
, shape=(\(N_{particles}\), 3), dtype=numpy.float32
) – points to calculate the bonding - orientations (
numpy.ndarray
, shape=(\(N_{particles}\)), dtype=numpy.float32
) – orientations as angles to use in computation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
getBonds
(self)¶ Returns: particle bonds Return type: numpy.ndarray
-
getBox
(self)¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
getListMap
(self)¶ Get the dict used to map list idx to bond idx
Returns: list_map Return type: dict >>> list_idx = list_map[bond_idx]
-
getRevListMap
(self)¶ Get the dict used to map list idx to bond idx
Returns: list_map Return type: dict >>> bond_idx = list_map[list_idx]
Coordinate System: \(r\), \(\theta_1\), \(\theta_2\)¶
-
class
freud.bond.
BondingR12
(r_max, bond_map, bond_list)¶ Compute the bonds each particle in the system.
For each particle in the system determine which other particles are in which bonding sites.
Module author: Eric Harper <harperic@umich.edu>
Parameters: - r_max (float) – distance to search for bonds
- bond_map (
numpy.ndarray
) – 3D array containing the bond index for each r, t2, t1 coordinate - bond_list (
numpy.ndarray
) – list containing the bond indices to be tracked bond_list[i] = bond_index
-
bonds
¶ return – particle bonds :rtype:
numpy.ndarray
-
box
¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box()
) – simulation box - ref_points (
numpy.ndarray
, shape=(\(N_{particles}\), 3), dtype=numpy.float32
) – points to calculate the bonding - ref_orientations (
numpy.ndarray
, shape=(\(N_{particles}\)), dtype=numpy.float32
) – orientations as angles to use in computation - points (
numpy.ndarray
, shape=(\(N_{particles}\), 3), dtype=numpy.float32
) – points to calculate the bonding - orientations (
numpy.ndarray
, shape=(\(N_{particles}\)), dtype=numpy.float32
) – orientations as angles to use in computation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
getBonds
(self)¶ Returns: particle bonds Return type: numpy.ndarray
-
getBox
(self)¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
getListMap
(self)¶ Get the dict used to map list idx to bond idx
Returns: list_map Return type: dict >>> list_idx = list_map[bond_idx]
-
getRevListMap
(self)¶ Get the dict used to map list idx to bond idx
Returns: list_map Return type: dict >>> bond_idx = list_map[list_idx]
Coordinate System: \(x\), \(y\), \(z\)¶
-
class
freud.bond.
BondingXYZ
(x_max, y_max, z_max, bond_map, bond_list)¶ Compute the bonds each particle in the system.
For each particle in the system determine which other particles are in which bonding sites.
Module author: Eric Harper <harperic@umich.edu>
Parameters: - x_max (float) – maximum x distance at which to search for bonds
- y_max (float) – maximum y distance at which to search for bonds
- z_max (float) – maximum z distance at which to search for bonds
- bond_map (
numpy.ndarray
) – 3D array containing the bond index for each x, y, z coordinate - bond_list (
numpy.ndarray
) – list containing the bond indices to be tracked bond_list[i] = bond_index
-
bonds
¶ return – particle bonds :rtype:
numpy.ndarray
-
box
¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box()
) – simulation box - ref_points (
numpy.ndarray
, shape=(\(N_{particles}\), 3), dtype=numpy.float32
) – points to calculate the bonding - ref_orientations (
numpy.ndarray
, shape=(\(N_{particles}\), 4), dtype=numpy.float32
) – orientations as quaternions to use in computation - points (
numpy.ndarray
, shape=(\(N_{particles}\), 3), dtype=numpy.float32
) – points to calculate the bonding - orientations (
numpy.ndarray
, shape=(\(N_{particles}\), 4), dtype=numpy.float32
) – orientations as quaternions to use in computation - nlist (
freud.locality.NeighborList
) –freud.locality.NeighborList
object to use to find bonds
- box (
-
getBonds
(self)¶ Returns: particle bonds Return type: numpy.ndarray
-
getBox
(self)¶ Get the box used in the calculation
Returns: freud Box Return type: freud.box.Box()
-
getListMap
(self)¶ Get the dict used to map list idx to bond idx
Returns: list_map Return type: dict >>> list_idx = list_map[bond_idx]
-
getRevListMap
(self)¶ Get the dict used to map list idx to bond idx
Returns: list_map Return type: dict >>> bond_idx = list_map[list_idx]