PMFT Module¶
Overview
freud.pmft.PMFTR12 |
Computes the PMFT [vanAndersKlotsa2014] [vanAndersAhmed2014] in a 2D system described by \(r\), \(\theta_1\), \(\theta_2\). |
freud.pmft.PMFTXYT |
Computes the PMFT [vanAndersKlotsa2014] [vanAndersAhmed2014] for systems described by coordinates \(x\), \(y\), \(\theta\) listed in the x, y, and t arrays. |
freud.pmft.PMFTXY2D |
Computes the PMFT [vanAndersKlotsa2014] [vanAndersAhmed2014] in coordinates \(x\), \(y\) listed in the x and y arrays. |
freud.pmft.PMFTXYZ |
Computes the PMFT [vanAndersKlotsa2014] [vanAndersAhmed2014] in coordinates \(x\), \(y\), \(z\), listed in the x, y, and z arrays. |
Details
The PMFT Module allows for the calculation of the Potential of Mean Force and Torque (PMFT) [vanAndersKlotsa2014] [vanAndersAhmed2014] in a number of different coordinate systems. The PMFT is defined as the negative algorithm of positional correlation function (PCF). A given set of reference points is given around which the PCF is computed and averaged in a sea of data points. The resulting values are accumulated in a PCF array listing the value of the PCF at a discrete set of points. The specific points are determined by the particular coordinate system used to represent the system.
Note
The coordinate system in which the calculation is performed is not the same as the coordinate system in which particle positions and orientations should be supplied. Only certain coordinate systems are available for certain particle positions and orientations:
2D particle coordinates (position: [\(x\), \(y\), \(0\)], orientation: \(\theta\)):
- \(r\), \(\theta_1\), \(\theta_2\).
- \(x\), \(y\).
- \(x\), \(y\), \(\theta\).
3D particle coordinates:
- \(x\), \(y\), \(z\).
-
class
freud.pmft.
PMFTR12
(r_max, n_r, n_t1, n_t2)¶ Computes the PMFT [vanAndersKlotsa2014] [vanAndersAhmed2014] in a 2D system described by \(r\), \(\theta_1\), \(\theta_2\).
Note
2D:
freud.pmft.PMFTR12
is only defined for 2D systems. The points must be passed in as[x, y, 0]
. Failing to set z=0 will lead to undefined behavior.Module author: Eric Harper <harperic@umich.edu>
Module author: Vyas Ramasubramani <vramasub@umich.edu>
Parameters: - r_max (float) – Maximum distance at which to compute the PMFT.
- n_r (unsigned int) – Number of bins in r.
- n_t1 (unsigned int) – Number of bins in t1.
- n_t2 (unsigned int) – Number of bins in t2.
Variables: - box (
freud.box.Box
) – Box used in the calculation. - bin_counts (\(\left(N_{r}, N_{\theta2}, N_{\theta1}\right)\)) – Bin counts.
- PCF (\(\left(N_{r}, N_{\theta2}, N_{\theta1}\right)\)) – The positional correlation function.
- PMFT (\(\left(N_{r}, N_{\theta2}, N_{\theta1}\right)\)) – The potential of mean force and torque.
- r_cut (float) – The cutoff used in the cell list.
- R (\(\left(N_{r}\right)\)
numpy.ndarray
) – The array of r-values for the PCF histogram. - T1 (\(\left(N_{\theta1}\right)\)
numpy.ndarray
) – The array of T1-values for the PCF histogram. - T2 (\(\left(N_{\theta2}\right)\)
numpy.ndarray
) – The array of T2-values for the PCF histogram. - inverse_jacobian (\(\left(N_{r}, N_{\theta2}, N_{\theta1}\right)\)) – The inverse Jacobian used in the PMFT.
- n_bins_r (unsigned int) – The number of bins in the r-dimension of histogram.
- n_bins_T1 (unsigned int) – The number of bins in the T1-dimension of histogram.
- n_bins_T2 (unsigned int) – The number of bins in the T2-dimension of histogram.
-
accumulate
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box
) – Simulation box. - ref_points ((\(N_{particles}\), 3)
numpy.ndarray
) – Reference points to calculate the local density. - ref_orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of reference points to use in the calculation. - points ((\(N_{particles}\), 3)
numpy.ndarray
) – Points to calculate the local density. - orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of particles to use in the calculation. - nlist (
freud.locality.NeighborList
, optional) – NeighborList to use to find bonds (Default value = None).
- box (
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function for the given points. Will overwrite the current histogram.
Parameters: - box (
freud.box.Box
) – Simulation box. - ref_points ((\(N_{particles}\), 3)
numpy.ndarray
) – Reference points to calculate the local density. - ref_orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Reference orientations as angles to use in computation. - points ((\(N_{particles}\), 3)
numpy.ndarray
) – Points to calculate the local density. - orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Orientations as angles to use in computation. - nlist (
freud.locality.NeighborList
, optional) – NeighborList to use to find bonds (Default value = None).
- box (
-
getBinCounts
(self)¶ Get the raw bin counts.
Returns: Bin Counts. Return type: \(\left(N_{r}, N_{\theta2}, N_{\theta1}\right)\) numpy.ndarray
-
getBox
(self)¶ Get the box used in the calculation.
Returns: freud Box. Return type: freud.box.Box
-
getInverseJacobian
(self)¶ Get the inverse Jacobian used in the PMFT.
Returns: Inverse Jacobian. Return type: \(\left(N_{r}, N_{\theta2}, N_{\theta1}\right)\) numpy.ndarray
-
getNBinsR
(self)¶ Get the number of bins in the r-dimension of histogram.
Returns: \(N_r\). Return type: unsigned int
-
getNBinsT1
(self)¶ Get the number of bins in the T1-dimension of histogram.
Returns: \(N_{\theta_1}\). Return type: unsigned int
-
getNBinsT2
(self)¶ Get the number of bins in the T2-dimension of histogram.
Returns: \(N_{\theta_2}\). Return type: unsigned int
-
getPCF
(self)¶ Get the positional correlation function.
Returns: PCF. Return type: \(\left(N_{r}, N_{\theta2}, N_{\theta1}\right)\) numpy.ndarray
-
getPMFT
(self)¶ Get the potential of mean force and torque.
Returns: PMFT. Return type: (matches PCF) numpy.ndarray
-
getR
(self)¶ Get the array of r-values for the PCF histogram.
Returns: Bin centers of r-dimension of histogram. Return type: \(\left(N_{r}\right)\) numpy.ndarray
-
getT1
(self)¶ Get the array of T1-values for the PCF histogram.
Returns: Bin centers of T1-dimension of histogram. Return type: \(\left(N_{\theta_1}\right)\) numpy.ndarray
-
getT2
(self)¶ Get the array of T2-values for the PCF histogram.
Returns: Bin centers of T2-dimension of histogram. Return type: \(\left(N_{\theta_2}\right)\) numpy.ndarray
-
reducePCF
(self)¶ Reduces the histogram in the values over N processors to a single histogram. This is called automatically by
freud.pmft.PMFT.PCF()
.
-
resetPCF
(self)¶ Resets the values of the PCF histograms in memory.
-
class
freud.pmft.
PMFTXYT
(x_max, y_max, n_x, n_y, n_t)¶ Computes the PMFT [vanAndersKlotsa2014] [vanAndersAhmed2014] for systems described by coordinates \(x\), \(y\), \(\theta\) listed in the x, y, and t arrays.
The values of x, y, t to compute the PCF at are controlled by x_max, y_max and n_bins_x, n_bins_y, n_bins_t parameters to the constructor. The x_max and y_max parameters determine the minimum/maximum x, y values (\(\min \left(\theta \right) = 0\), (\(\max \left( \theta \right) = 2\pi\)) at which to compute the PCF and n_bins_x, n_bins_y, n_bins_t is the number of bins in x, y, t.
Note
2D:
freud.pmft.PMFTXYT
is only defined for 2D systems. The points must be passed in as[x, y, 0]
. Failing to set z=0 will lead to undefined behavior.Module author: Eric Harper <harperic@umich.edu>
Module author: Vyas Ramasubramani <vramasub@umich.edu>
Parameters: Variables: - box (
freud.box.Box
) – Box used in the calculation. - bin_counts (\(\left(N_{\theta}, N_{y}, N_{x}\right)\)
numpy.ndarray
) – Bin counts. - PCF (\(\left(N_{\theta}, N_{y}, N_{x}\right)\)
numpy.ndarray
) – The positional correlation function. - PMFT (\(\left(N_{\theta}, N_{y}, N_{x}\right)\)
numpy.ndarray
) – The potential of mean force and torque. - r_cut (float) – The cutoff used in the cell list.
- X (\(\left(N_{x}\right)\)
numpy.ndarray
) – The array of x-values for the PCF histogram. - Y (\(\left(N_{y}\right)\)
numpy.ndarray
) – The array of y-values for the PCF histogram. - T (\(\left(N_{\theta}\right)\)
numpy.ndarray
) – The array of T-values for the PCF histogram. - jacobian (float) – The Jacobian used in the PMFT.
- n_bins_x (unsigned int) – The number of bins in the x-dimension of histogram.
- n_bins_y (unsigned int) – The number of bins in the y-dimension of histogram.
- n_bins_T (unsigned int) – The number of bins in the T-dimension of histogram.
-
accumulate
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box
) – Simulation box. - ref_points ((\(N_{particles}\), 3)
numpy.ndarray
) – Reference points to calculate the local density. - ref_orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Reference orientations as angles to use in computation. - points ((\(N_{particles}\), 3)
numpy.ndarray
) – Points to calculate the local density. - orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – orientations as angles to use in computation. - nlist (
freud.locality.NeighborList
, optional) – NeighborList to use to find bonds (Default value = None).
- box (
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function for the given points. Will overwrite the current histogram.
Parameters: - box (
freud.box.Box
) – Simulation box. - ref_points ((\(N_{particles}\), 3)
numpy.ndarray
) – Reference points to calculate the local density. - ref_orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Reference orientations as angles to use in computation. - points ((\(N_{particles}\), 3)
numpy.ndarray
) – Points to calculate the local density. - orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – orientations as angles to use in computation. - nlist (
freud.locality.NeighborList
, optional) – NeighborList to use to find bonds (Default value = None).
- box (
-
getBinCounts
(self)¶ Get the raw bin counts.
Returns: Bin Counts. Return type: \(\left(N_{\theta}, N_{y}, N_{x}\right)\) numpy.ndarray
-
getBox
(self)¶ Get the box used in the calculation.
Returns: freud Box. Return type: freud.box.Box
-
getNBinsT
(self)¶ Get the number of bins in the t-dimension of histogram.
Returns: \(N_{\theta}\). Return type: unsigned int
-
getNBinsX
(self)¶ Get the number of bins in the x-dimension of histogram.
Returns: \(N_x\). Return type: unsigned int
-
getNBinsY
(self)¶ Get the number of bins in the y-dimension of histogram.
Returns: \(N_y\). Return type: unsigned int
-
getPCF
(self)¶ Get the positional correlation function.
Returns: PCF. Return type: \(\left(N_{\theta}, N_{y}, N_{x}\right)\) numpy.ndarray
-
getPMFT
(self)¶ Get the potential of mean force and torque.
Returns: PMFT. Return type: (matches PCF) numpy.ndarray
-
getT
(self)¶ Get the array of t-values for the PCF histogram.
Returns: Bin centers of t-dimension of histogram. Return type: \(\left(N_{\theta}\right)\) numpy.ndarray
-
getX
(self)¶ Get the array of x-values for the PCF histogram.
Returns: Bin centers of x-dimension of histogram. Return type: \(\left(N_{x}\right)\) numpy.ndarray
-
getY
(self)¶ Get the array of y-values for the PCF histogram.
Returns: Bin centers of y-dimension of histogram. Return type: \(\left(N_{y}\right)\) numpy.ndarray
-
reducePCF
(self)¶ Reduces the histogram in the values over N processors to a single histogram. This is called automatically by
freud.pmft.PMFT.PCF()
.
-
resetPCF
(self)¶ Resets the values of the PCF histograms in memory.
- box (
-
class
freud.pmft.
PMFTXY2D
(x_max, y_max, n_x, n_y)¶ Computes the PMFT [vanAndersKlotsa2014] [vanAndersAhmed2014] in coordinates \(x\), \(y\) listed in the x and y arrays.
The values of x and y to compute the PCF at are controlled by x_max, y_max, n_x, and n_y parameters to the constructor. The x_max and y_max parameters determine the minimum/maximum distance at which to compute the PCF and n_x and n_y are the number of bins in x and y.
Note
2D:
freud.pmft.PMFTXY2D
is only defined for 2D systems. The points must be passed in as[x, y, 0]
. Failing to set z=0 will lead to undefined behavior.Module author: Eric Harper <harperic@umich.edu>
Module author: Vyas Ramasubramani <vramasub@umich.edu>
Parameters: Variables: - box (
freud.box.Box
) – Box used in the calculation. - bin_counts (\(\left(N_{y}, N_{x}\right)\)
numpy.ndarray
) – Bin counts. - PCF (\(\left(N_{y}, N_{x}\right)\)
numpy.ndarray
) – The positional correlation function. - PMFT (\(\left(N_{y}, N_{x}\right)\)
numpy.ndarray
) – The potential of mean force and torque. - r_cut (float) – The cutoff used in the cell list.
- X (\(\left(N_{x}\right)\)
numpy.ndarray
) – The array of x-values for the PCF histogram. - Y (\(\left(N_{y}\right)\)
numpy.ndarray
) – The array of y-values for the PCF histogram. - jacobian (float) – The Jacobian used in the PMFT.
- n_bins_x (unsigned int) – The number of bins in the x-dimension of histogram.
- n_bins_y (unsigned int) – The number of bins in the y-dimension of histogram.
-
accumulate
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box
) – Simulation box. - ref_points ((\(N_{particles}\), 3)
numpy.ndarray
) – Reference points to calculate the local density. - ref_orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of reference points to use in the calculation. - points ((\(N_{particles}\), 3)
numpy.ndarray
) – Points to calculate the local density. - orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of particles to use in the calculation. - nlist (
freud.locality.NeighborList
, optional) – NeighborList to use to find bonds (Default value = None).
- box (
-
compute
(self, box, ref_points, ref_orientations, points, orientations, nlist=None)¶ Calculates the positional correlation function for the given points. Will overwrite the current histogram.
Parameters: - box (
freud.box.Box
) – Simulation box. - ref_points ((\(N_{particles}\), 3)
numpy.ndarray
) – Reference points to calculate the local density. - ref_orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of reference points to use in the calculation. - points ((\(N_{particles}\), 3)
numpy.ndarray
) – Points to calculate the local density. - orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of particles to use in the calculation. - nlist (
freud.locality.NeighborList
, optional) – NeighborList to use to find bonds (Default value = None).
- box (
-
getBinCounts
(self)¶ Get the raw bin counts (non-normalized).
Returns: Bin Counts. Return type: \(\left(N_{y}, N_{x}\right)\) numpy.ndarray
-
getBox
(self)¶ Get the box used in the calculation.
Returns: freud Box. Return type: freud.box.Box
-
getNBinsX
(self)¶ Get the number of bins in the x-dimension of histogram.
Returns: \(N_x\). Return type: unsigned int
-
getNBinsY
(self)¶ Get the number of bins in the y-dimension of histogram.
Returns: \(N_y\). Return type: unsigned int
-
getPCF
(self)¶ Get the positional correlation function.
Returns: PCF. Return type: \(\left(N_{y}, N_{x}\right)\) numpy.ndarray
-
getPMFT
(self)¶ Get the potential of mean force and torque.
Returns: PMFT. Return type: (matches PCF) numpy.ndarray
-
getX
(self)¶ Get the array of x-values for the PCF histogram.
Returns: Bin centers of x-dimension of histogram. Return type: \(\left(N_{x}\right)\) numpy.ndarray
-
getY
(self)¶ Get the array of y-values for the PCF histogram.
Returns: Bin centers of y-dimension of histogram. Return type: \(\left(N_{y}\right)\) numpy.ndarray
-
reducePCF
(self)¶ Reduces the histogram in the values over N processors to a single histogram. This is called automatically by
freud.pmft.PMFT.PCF()
.
-
resetPCF
(self)¶ Resets the values of the PCF histograms in memory.
- box (
-
class
freud.pmft.
PMFTXYZ
(x_max, y_max, z_max, n_x, n_y, n_z)¶ Computes the PMFT [vanAndersKlotsa2014] [vanAndersAhmed2014] in coordinates \(x\), \(y\), \(z\), listed in the x, y, and z arrays.
The values of x, y, z to compute the PCF at are controlled by x_max, y_max, z_max, n_x, n_y, and n_z parameters to the constructor. The x_max, y_max, and z_max parameters determine the minimum/maximum distance at which to compute the PCF and n_x, n_y, and n_z are the number of bins in x, y, z.
Note
3D:
freud.pmft.PMFTXYZ
is only defined for 3D systems. The points must be passed in as[x, y, z]
.Module author: Eric Harper <harperic@umich.edu>
Module author: Vyas Ramasubramani <vramasub@umich.edu>
Parameters: - x_max (float) – Maximum x distance at which to compute the PMFT.
- y_max (float) – Maximum y distance at which to compute the PMFT.
- z_max (float) – Maximum z distance at which to compute the PMFT.
- n_x (unsigned int) – Number of bins in x.
- n_y (unsigned int) – Number of bins in y.
- n_z (unsigned int) – Number of bins in z.
- shiftvec (list) – Vector pointing from [0,0,0] to the center of the PMFT.
Variables: - box (
freud.box.Box
) – Box used in the calculation. - bin_counts (\(\left(N_{z}, N_{y}, N_{x}\right)\)
numpy.ndarray
) – Bin counts. - PCF (\(\left(N_{z}, N_{y}, N_{x}\right)\)
numpy.ndarray
) – The positional correlation function. - PMFT (\(\left(N_{z}, N_{y}, N_{x}\right)\)
numpy.ndarray
) – The potential of mean force and torque. - r_cut (float) – The cutoff used in the cell list.
- X (\(\left(N_{x}\right)\)
numpy.ndarray
) – The array of x-values for the PCF histogram. - Y (\(\left(N_{y}\right)\)
numpy.ndarray
) – The array of y-values for the PCF histogram. - Z (\(\left(N_{z}\right)\)
numpy.ndarray
) – The array of z-values for the PCF histogram. - jacobian (float) – The Jacobian used in the PMFT.
- n_bins_x (unsigned int) – The number of bins in the x-dimension of histogram.
- n_bins_y (unsigned int) – The number of bins in the y-dimension of histogram.
- n_bins_z (unsigned int) – The number of bins in the z-dimension of histogram.
-
accumulate
(self, box, ref_points, ref_orientations, points, orientations, face_orientations=None, nlist=None)¶ Calculates the positional correlation function and adds to the current histogram.
Parameters: - box (
freud.box.Box
) – Simulation box. - ref_points ((\(N_{particles}\), 3)
numpy.ndarray
) – Reference points to calculate the local density. - ref_orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of reference points to use in the calculation. - points ((\(N_{particles}\), 3)
numpy.ndarray
) – Points to calculate the local density. - orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of particles to use in the calculation. - face_orientations ((\(N_{particles}\), 4)
numpy.ndarray
, optional) – Orientations of particle faces to account for particle symmetry. If not supplied by user, unit quaternions will be supplied. If a 2D array of shape (\(N_f\), \(4\)) or a 3D array of shape (1, \(N_f\), \(4\)) is supplied, the supplied quaternions will be broadcast for all particles. (Default value = None). - nlist (
freud.locality.NeighborList
, optional) – NeighborList to use to find bonds (Default value = None).
- box (
-
compute
(self, box, ref_points, ref_orientations, points, orientations, face_orientations=None, nlist=None)¶ Calculates the positional correlation function for the given points. Will overwrite the current histogram.
Parameters: - box (
freud.box.Box
) – Simulation box. - ref_points ((\(N_{particles}\), 3)
numpy.ndarray
) – Reference points to calculate the local density. - ref_orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of reference points to use in the calculation. - points ((\(N_{particles}\), 3)
numpy.ndarray
) – Points to calculate the local density. - orientations ((\(N_{particles}\), 4)
numpy.ndarray
) – Angles of particles to use in the calculation. - face_orientations ((\(N_{particles}\), 4)
numpy.ndarray
, optional) – Orientations of particle faces to account for particle symmetry. If not supplied by user, unit quaternions will be supplied. If a 2D array of shape (\(N_f\), \(4\)) or a 3D array of shape (1, \(N_f\), \(4\)) is supplied, the supplied quaternions will be broadcast for all particles. (Default value = None). - nlist (
freud.locality.NeighborList
, optional) – NeighborList to use to find bonds (Default value = None).
- box (
-
getBinCounts
(self)¶ Get the raw bin counts.
Returns: Bin Counts. Return type: \(\left(N_{z}, N_{y}, N_{x}\right)\) numpy.ndarray
-
getBox
(self)¶ Get the box used in the calculation.
Returns: freud Box. Return type: freud.box.Box
-
getNBinsX
(self)¶ Get the number of bins in the x-dimension of histogram.
Returns: \(N_x\). Return type: unsigned int
-
getNBinsY
(self)¶ Get the number of bins in the y-dimension of histogram.
Returns: \(N_y\). Return type: unsigned int
-
getNBinsZ
(self)¶ Get the number of bins in the z-dimension of histogram.
Returns: \(N_z\). Return type: unsigned int
-
getPCF
(self)¶ Get the positional correlation function.
Returns: PCF. Return type: \(\left(N_{z}, N_{y}, N_{x}\right)\) numpy.ndarray
-
getPMFT
(self)¶ Get the potential of mean force and torque.
Returns: PMFT. Return type: \(\left(N_{z}, N_{y}, N_{x}\right)\) numpy.ndarray
-
getX
(self)¶ Get the array of x-values for the PCF histogram.
Returns: Bin centers of x-dimension of histogram. Return type: \(\left(N_{x}\right)\) numpy.ndarray
-
getY
(self)¶ Get the array of y-values for the PCF histogram.
Returns: Bin centers of y-dimension of histogram. Return type: \(\left(N_{y}\right)\) numpy.ndarray
-
getZ
(self)¶ Get the array of z-values for the PCF histogram.
Returns: Bin centers of z-dimension of histogram. Return type: \(\left(N_{z}\right)\) numpy.ndarray
-
reducePCF
(self)¶ Reduces the histogram in the values over N processors to a single histogram. This is called automatically by
freud.pmft.PMFTXYZ.PCF()
.
-
resetPCF
(self)¶ Resets the values of the PCF histograms in memory.