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CHAPTER

ONE

OVERVIEW

The freud Python library provides a simple, flexible, powerful set of tools for analyzing trajectories obtained from
molecular dynamics or Monte Carlo simulations. High performance, parallelized C++ is used to compute standard
tools such as radial distribution functions, correlation functions, order parameters, and clusters, as well as original
analysis methods including potentials of mean force and torque (PMFTs) and local environment matching. The freud
library supports many input formats and outputs NumPy arrays, enabling integration with the scientific Python ecosys-
tem for many typical materials science workflows.
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CHAPTER

TWO

RESOURCES

• Reference Documentation: Examples, tutorials, topic guides, and package Python APIs.

• Installation Guide: Instructions for installing and compiling freud.

• freud-users Google Group: Ask questions to the freud user community.

• GitHub repository: Download the freud source code.

• Issue tracker: Report issues or request features.
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CHAPTER

THREE

CITATION

When using freud to process data for publication, please use this citation.

7
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CHAPTER

FOUR

INSTALLATION

The easiest ways to install freud are using pip:

pip install freud-analysis

or conda:

conda install -c conda-forge freud

freud is also available via containers for Docker or Singularity. If you need more detailed information or wish to
install freud from source, please refer to the Installation Guide to compile freud from source.
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CHAPTER

FIVE

EXAMPLES

The freud library is called using Python scripts. Many core features are demonstrated in the freud documentation. The
examples come in the form of Jupyter notebooks, which can also be downloaded from the freud examples repository
or launched interactively on Binder. Below is a sample script that computes the radial distribution function for a
simulation run with HOOMD-blue and saved into a GSD file.

import freud
import gsd.hoomd

# Create a freud compute object (RDF is the canonical example)
rdf = freud.density.RDF(bins=50, r_max=5)

# Load a GSD trajectory (see docs for other formats)
traj = gsd.hoomd.open('trajectory.gsd', 'rb')
for frame in traj:

rdf.compute(system=frame, reset=False)

# Get bin centers, RDF data from attributes
r = rdf.bin_centers
y = rdf.rdf

11
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CHAPTER

SIX

SUPPORT AND CONTRIBUTION

Please visit our repository on GitHub for the library source code. Any issues or bugs may be reported at our issue
tracker, while questions and discussion can be directed to our user forum. All contributions to freud are welcomed
via pull requests!
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CHAPTER

SEVEN

TABLE OF CONTENTS

7.1 Introduction

The freud library is a Python package for analyzing particle simulations. The package is designed to directly use
numerical arrays of data, making it easy to use for a wide range of use-cases. The most common use-case of freud is
for computing quantities from molecular dynamics simulation trajectories, but it can be used for analyzing any type of
particle simulation. By operating directly on numerical arrays of data, freud allows users to parse custom simulation
outputs into a suitable structure for input, rather than relying specific file types or data structures.

The core of freud is analysis of periodic systems, which are represented through the freud.box.Box class. The
freud.box.Box supports arbitrary triclinic systems for maximum flexibility, and is used throughout the package
to ensure consistent treatment of these systems. The package’s many methods are encapsulated in various com-
pute classes, which perform computations and populate class attributes for access. Of particular note are the vari-
ous computations based on nearest neighbor finding in order to characterize particle environments. Such methods
are simplified and accelerated through a centralized neighbor finding interface defined in the freud.locality.
NeighborQuery family of classes in the freud.locality module of freud.

7.2 Installation

7.2.1 Installing freud

The freud library can be installed via conda or pip, or compiled from source.

Install via conda

The code below will install freud from conda-forge.

conda install -c conda-forge freud

15
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Install via pip

The code below will install freud from PyPI.

pip install freud-analysis

Compile from source

The following are required for installing freud:

• A C++14-compliant compiler

• Python (>=Python 3.6)

• NumPy

• Intel Threading Building Blocks

• Cython (>=0.29)

• scikit-build (>=0.10.0)

• CMake (>=3.3.0)

Note: Depending on the generator you are using, you may require a newer version of CMake. In particular, on
Windows Visual Studio 2017 requires at least CMake 3.7.1, while Visual Studio 2019 requires CMake 3.14. For more
information on specific generators, see the CMake generator documentation.

The freud library uses scikit-build and CMake to handle the build process itself, while the other requirements are
required for compiling code in freud. These requirements can be met by installing the following packages from the
conda-forge channel:

conda install -c conda-forge tbb tbb-devel numpy cython scikit-build cmake

All requirements other than TBB can also be installed via the Python Package Index

pip install numpy cython scikit-build cmake

Wheels for tbb and tbb-devel exist on PyPI, but only for certain operating systems, so your mileage may vary. For
non-conda users, we recommend using OS-specific package managers (e.g. Homebrew for Mac) to install TBB. As
in the snippets above, it may be necessary to install both both a TBB and a “devel” package in order to get both the
headers and the shared libraries.

The code that follows builds freud and installs it for all users (append --user if you wish to install it to your user
site directory):

git clone --recurse-submodules https://github.com/glotzerlab/freud.git
cd freud
python setup.py install

You can also build freud in place so that you can run from within the folder:

# Run tests from the tests directory
python setup.py build_ext --inplace

Building freud in place has certain advantages, since it does not affect your Python behavior except within the freud
directory itself (where freud can be imported after building). Additionally, due to limitations inherent to the distu-
tils/setuptools infrastructure, building extension modules can only be parallelized using the build_ext subcommand of
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setup.py, not with install. As a result, it will be faster to manually run build_ext and then install (which normally calls
build_ext under the hood anyway) the built packages.

CMake Options

The scikit-build tool allows setup.py to accept three different sets of options separated by --, where each set
is provided directly to scikit-build, to CMake, or to the code generator of choice, respectively. For example,
the command python setup.py build_ext --inplace -- -DCOVERAGE=ON -G Ninja -- -j 4
tell scikit-build to perform an in-place build, it tells CMake to turn on the COVERAGE option and use Ninja for compi-
lation, and it tells Ninja to compile with 4 parallel threads. For more information on these options, see the scikit-build
docs.

In addition to standard CMake flags, the following CMake options are available for freud:

--COVERAGE Build the Cython files with coverage support to check unit test coverage.

The freud CMake configuration also respects the following environment variables (in addition to standards like
LD_LIBRARY_PATH).

TBB_ROOT The root directory where TBB is installed. Useful if TBB is installed in a non-standard location or
cannot be located by Python for some other reason.

TBB_INCLUDE The directory where the TBB headers (e.g. tbb.h) are located. Useful if TBB is installed in a
non-standard location or cannot be located by Python for some other reason.

TBB_LINK The directory where the TBB shared library (e.g. libtbb.so or libtbb.dylib) is located. Useful
if TBB is installed in a non-standard location or cannot be located by Python for some other reason.

Note: freud makes use of git submodules. If you ever wish to manually update these, you can execute:

git submodule update --init

7.2.2 Unit Tests

The unit tests for freud are included in the repository and are configured to be run using the Python unittest
library:

# Run tests from the tests directory
cd tests
python -m unittest discover .

Note that because freud is designed to require installation to run (i.e. it cannot be run directly out of the build
directory), importing freud from the root of the repository will fail because it will try and import the package folder.
As a result, unit tests must be run from outside the root directory if you wish to test the installed version of freud. If
you want to run tests within the root directory, you can instead build freud in place:

# Run tests from the tests directory
python setup.py build_ext --inplace

This build will place the necessary files alongside the freud source files so that freud can be imported from the root
of the repository.

7.2. Installation 17
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7.2.3 Documentation

The documentation for freud is hosted online at ReadTheDocs. You may also build the documentation yourself.

Building the documentation

The following are required for building freud documentation:

• Sphinx

• Read the Docs Sphinx Theme

• nbsphinx

• jupyter_sphinx

• sphinxcontrib-bibtex

You can install these dependencies using conda:

conda install -c conda-forge sphinx sphinx_rtd_theme nbsphinx jupyter_sphinx
→˓sphinxcontrib-bibtex

or pip:

pip install sphinx sphinx-rtd-theme nbsphinx jupyter-sphinx sphinxcontrib-bibtex

To build the documentation, run the following commands in the source directory:

cd doc
make html
# Then open build/html/index.html

To build a PDF of the documentation (requires LaTeX and/or PDFLaTeX):

cd doc
make latexpdf
# Then open build/latex/freud.pdf

7.3 Quickstart Guide

Once you have installed freud, you can start using freud with any simulation data that you have on hand. As an
example, we’ll assume that you have run a simulation using the HOOMD-blue and used the hoomd.dump.gsd
command to output the trajectory into a file trajectory.gsd. The GSD file format provides its own convenient
Python file reader that offers access to data in the form of NumPy arrays, making it immediately suitable for calculation
with freud. Many other file readers and data formats are supported, see Reading Simulation Data for freud for a full
list and more examples.

We start by reading the data into a NumPy array:

import gsd.hoomd
traj = gsd.hoomd.open('trajectory.gsd', 'rb')

We can now immediately calculate important quantities. Here, we will compute the radial distribution function 𝑔(𝑟)
using the freud.density.RDF compute class. Since the radial distribution function is in practice computed as a
histogram, we must specify the histogram bin widths and the largest interparticle distance to include in our calculation.
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To do so, we simply instantiate the class with the appropriate parameters and then perform a computation on the given
data:

import freud
rdf = freud.density.RDF(bins=50, r_max=5)
rdf.compute(system=traj[-1])

We can now access the data through properties of the rdf object.

r = rdf.bin_centers
y = rdf.rdf

Many classes in freud natively support plotting their data using Matplotlib <https://matplotlib.org/>:

import matplotlib as plt
fig, ax = plt.subplots()
rdf.plot(ax=ax)

You will note that in the above example, we computed 𝑔(𝑟) only using the final frame of the simulation trajectory,
traj[-1]. However, in many cases, radial distributions and other similar quantities may be noisy in simulations due
to the natural fluctuations present. In general, what we are interested in are time-averaged quantities once a system has
equilibrated. To perform such a calculation, we can easily modify our original calculation to take advantage of freud’s
accumulation features. To accumulate, just add the argument reset=False with a supported compute object (such
as histogram-like computations). Assuming that you have some method for identifying the frames you wish to include
in your sample, our original code snippet would be modified as follows:

import freud
rdf = freud.density.RDF(bins=50, r_max=5)
for frame in traj:

rdf.compute(frame, reset=False)

You can then access the data exactly as we previously did. And that’s it!

Now that you’ve seen a brief example of reading data and computing a radial distribution function, you’re ready to
learn more. If you’d like a complete walkthrough please see the Tutorial. The tutorial walks through many of the core
concepts in freud in greater detail, starting with the basics of the simulation systems we analyze and describing the
details of the neighbor finding logic in freud. To see specific features of freud in action, look through the Examples.
More detailed documentation on specific classes and functions can be found in the API documentation.

7.4 Tutorial

This tutorial provides a complete introduction to freud. Rather than attempting to touch on all features in freud, it
focuses on common core concepts that will help understand how freud works with data and exposes computations to
the user. The tutorial begins by introducing the fundamental concepts of periodic systems as implemented in freud
and the concept of Compute classes, which consitute the primary API for performing calculations with freud.
The tutorial then discusses the most common calculation performed in freud, finding neighboring points in periodic
systems. The package’s neighbor finding tools are tuned for high performance neighbor finding, which is what enables
most of other calculations in freud, which typically involve characterizing local environments of points in some way.
The next part of the tutorial discusses the role of histograms in freud, focusing on the common features and properties
that all histograms share. Finally, the tutorial includes a few more complete demonstrations of using freud that should
provide reasonable templates for use with almost any other features in freud.

7.4. Tutorial 19
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7.4.1 Periodic Boundary Conditions

The central goal of freud is the analysis of simulations performed in periodic boxes. Periodic boundary conditions
are ubiquitous in simulations because they permit the simulation of quasi-infinite systems with minimal computational
effort. As long as simulation systems are sufficiently large, i.e. assuming that points in the system experience corre-
lations over length scales substantially smaller than the system length scale, periodic boundary conditions ensure that
the system appears effectively infinite to all points.

In order to consistently define the geometry of a simulation system with periodic boundaries, freud defines the
freud.box.Box class. The class encapsulates the concept of a triclinic simulation box in a right-handed coordinate
system. Triclinic boxes are defined as parallelepipeds: three-dimensional polyhedra where every face is a parallelo-
gram. In general, any such box can be represented by three distinct, linearly independent box vectors. Enforcing the
requirement of right-handedness guarantees that the box can be represented by a matrix of the form

h =

⎛⎝ 𝐿𝑥 𝑥𝑦𝐿𝑦 𝑥𝑧𝐿𝑧

0 𝐿𝑦 𝑦𝑧𝐿𝑧

0 0 𝐿𝑧

⎞⎠
where each column is one of the box vectors.

Note: All freud boxes are centered at the origin, so for a given box the range of possible positions is [−𝐿/2, 𝐿/2).

As such, the box is characterized by six parameters: the box vector lengths 𝐿𝑥, 𝐿𝑦 , and 𝐿𝑧 , and the tilt factors 𝑥𝑦, 𝑥𝑧,
and 𝑦𝑧. The tilt factors are directly related to the angles between the box vectors. All computations in freud are built
around this class, ensuring that they naturally handle data from simulations conducted in non-cubic systems. There is
also native support for two-dimensional (2D) systems when setting 𝐿𝑧 = 0.

Boxes can be constructed in a variety of ways. For simple use-cases, one of the factory functions of the freud.box.
Box provides the easiest possible interface:

# Make a 10x10 square box (for 2-dimensional systems).
freud.box.Box.square(10)

# Make a 10x10x10 cubic box.
freud.box.Box.cube(10)

For more complex use-cases, the freud.box.Box.from_box() method provides an interface to create boxes
from any object that can easily be interpreted as a box.

# Create a 10x10 square box from a list of two items.
freud.box.Box.from_box([10, 10])

# Create a 10x10x10 cubic box from a list of three items.
freud.box.Box.from_box([10, 10, 10])

# Create a triclinic box from a list of six items (including tilt factors).
freud.box.Box.from_box([10, 5, 2, 0.1, 0.5, 0.7])

# Create a triclinic box from a dictionary.
freud.box.Box.from_box(dict(Lx=8, Ly=7, Lz=10, xy=0.5, xz=0.7, yz=0.2))

# Directly call the constructor.
freud.box.Box(Lx=8, Ly=7, Lz=10, xy=0.5, xz=0.7, yz=0.2, dimensions=3)

More examples on how boxes can be created may be found in the API documentation of the Box class.
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7.4.2 Compute Classes

Calculations in freud are built around the concept of Compute classes, Python objects that encode a given
method and expose it through a compute method. In general, these methods operate on a system composed of a
triclinic box and a NumPy array of particle positions. The box can be provided as any object that can be interpreted as
a freud box (as demonstrated in the examples above). We can look at the freud.order.Hexatic order parameter
calculator as an example:

import freud
positions = ... # Read positions from trajectory file.
op = freud.order.Hexatic(k=6)
op.compute(

system=({'Lx': 5, 'Ly': 5, 'dimensions': 2}, positions),
neighbors=dict(r_max=3)

)

# Plot the value of the order parameter.
from matplotlib import pyplot as plt
plt.hist(np.absolute(op.particle_order))

Here, we are calculating the hexatic order parameter, then using Matplotlib to plot. The freud.order.Hexatic
class constructor accepts a single argument k, which represents the periodicity of the calculation. If you’re unfamiliar
with this order parameter, the most important piece of information here is that many compute methods in freud require
parameters that are provided when the Compute class is constructed.

To calculate the order parameter we call compute, which takes two arguments, a tuple (box, points) and a dict.
We first focus on the first argument. The box is any object that can be coerced into a freud.box.Box as described
in the previous section; in this case, we use a dictionary to specify a square (2-dimensional) box. The points must
be anything that can be coerced into a 2-dimensional NumPy array of shape (N, 3) In general, the points may be
provided as anything that can be interpreted as an 𝑁 × 3 list of positions; for more details on valid inputs here, see
numpy.asarray(). Note that because the hexatic order parameter is designed for two-dimensional systems, the
points must be provided of the form [x, y, 0] (i.e. the z-component must be 0). We’ll go into more detail about the
(box, points) tuple soon, but for now, it’s sufficient to just think of it as specifying the system of points we want
to work with.

Now let’s return to the neighbors argument to compute, which is a dictionary is used to determine which particle
neighbors to use. Many computations in freud (such as the hexatic order parameter) involve the bonds in the system
(for example, the average length of bonds or the average number of bonds a given point has). However, the concept
of a bond is sufficiently variable between different calculations; for instance, should points be considered bonded if
they are within a certain distance of each other? Should every point be considered bonded to a fixed number of other
points?

To accommodate this variability, freud offers a very general framework by which bonds can be specified, and we’ll
go into more details in the next section. In the example above, we’ve simply informed the Hexatic class that we
want it to define bonds as pairs of particles that are less than 3 distance units apart. We then access the computed order
parameter as op.particle_order (we use np.absolute() because the output is a complex number and we
just want to see its magnitude).

7.4. Tutorial 21
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Accessing Computed Properties

In general, Compute classes expose their calculations using properties. Any parameters to the Compute object
(e.g. k in the above example) can typically be accessed as soon as the object is constructed:

op = freud.order.Hexatic(k=6)
op.k

Computed quantities can also be accessed in a similar manner, but only after the compute method is called. For
example:

op = freud.order.Hexatic(k=6)

# This will raise an exception.
op.particle_order

op.compute(
system=({'Lx': 5, 'Ly': 5, 'dimensions': 2}, positions),
neighbors=dict(r_max=3)

)

# Now you can access this.
op.particle_order

Note: Most (but not all) of freud’s Compute classes are Python wrappers around high-performance implemen-
tations in C++. As a result, none of the data or the computations is actually stored in the Python object. Instead,
the Python object just stores an instance of the C++ object that actually owns all its data, performs calculations, and
returns computed quantities to the user. Python properties provide a nice way to hide this logic so that the Python code
involves just a few lines.

Compute objects is that they can be used many times to calculate quantities, and the most recently calculated output
can be accessed through the property. If you need to perform a series of calculations and save all the data, you can
also easily do that:

# Recall that lists of length 2 automatically convert to 2D freud boxes.
box = [5, 5]

op = freud.order.Hexatic(k=6)

# Assuming that we have a list of Nx3 NumPy arrays that represents a
# simulation trajectory, we can loop over it and calculate the order
# parameter values in sequence.
trajectory = ... # Read trajectory file into a list of positions by frame.
hexatic_values = []
for points in trajectory:

op.compute(system=(box, points), neighbors=dict(r_max=3))
hexatic_values.append(op.particle_order)

To make using freud as simple as possible, all Compute classes are designed to return self when compute is
called. This feature enables a very concise method-chaining idiom in freud where computed properties are accessed
immediately:

particle_order = freud.order.Hexatic(k=6).compute(
system=(box, points)).particle_order
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7.4.3 Finding Neighbors

Now that you’ve been introduced to the basics of interacting with freud, let’s dive into the central feature of freud:
efficiently and flexibly finding neighbors in periodic systems.

Problem Statement

Neighbor-Based Calculations

As discussed in the previous section, a central task in many of the computations in freud is finding particles’ neighbors.
These calculations typically only involve a limited subset of a particle’s neighbors that are defined as characterizing its
local environment. This requirement is analogous to the force calculations typically performed in molecular dynamics
simulations, where a cutoff radius is specified beyond which pair forces are assumed to be small enough to neglect.
Unlike in simulation, though, many analyses call for different specifications than simply selecting all points within a
certain distance.

An important example is the calculation of order parameters, which can help characterize phase transitions. Such
parameters can be highly sensitive to the precise way in which neighbors are selected. For instance, if a hard distance
cutoff is imposed in finding neighbors for the hexatic order parameter, a particle may only be found to have five
neighbors when it actually has six neighbors except the last particle is slightly outside the cutoff radius. To accomodate
such differences in a flexible manner, freud allows users to specify neighbors in a variety of ways.

Finding Periodic Neighbors

Finding neighbors in periodic systems is significantly more challenging than in aperiodic systems. To illustrate the
difference, consider the figure above, where the black dashed line indicates the boundaries of the system. If this system
were aperiodic, the three nearest neighbors for point 1 would be points 5, 6, and 7. However, due to periodicity, point
2 is actually closer to point 1 than any of the others if you consider moving straight through the top (or equivalently,
the bottom) boundary. Although many tools provide efficient implementations of algorithms for finding neighbors in
aperiodic systems, they seldom generalize to periodic systems. Even more rare is the ability to work not just in cubic
periodic systems, which are relatively tractable, but in arbitrary triclinic geometries as described in Periodic Boundary
Conditions. This is precisely the type of calculation freud is designed for.
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Neighbor Querying

To understand how Compute classes find neighbors in freud, it helps to start by learning about freud’s neighbor
finding classes directly. Note that much more detail on this topic is available in the Query API topic guide; in this
section we will restrict ourselves to a higher-level overview. For our demonstration, we will make use of the freud.
locality.AABBQuery class, which implements one fast method for periodic neighbor finding. The primary mode
of interfacing with this class (and other neighbor finding classes) is through the query interface.

import numpy as np
import freud

# As an example, we randomly generate 100 points in a 10x10x10 cubic box.
L = 10
num_points = 100

# We shift all points into the expected range for freud.
points = np.random.rand(num_points)*L - L/2
box = freud.box.Box.cube(L)
aq = freud.locality.AABBQuery(box, points)

# Now we generate a smaller sample of points for which we want to find
# neighbors based on the original set.
query_points = np.random.rand(num_points/10)*L - L/2
distances = []

# Here, we ask for the 4 nearest neighbors of each point in query_points.
for bond in aq.query(query_points, dict(num_neighbors=4)):

# The returned bonds are tuples of the form
# (query_point_index, point_index, distance). For instance, a bond
# (1, 3, 0.2) would indicate that points[3] was one of the 4 nearest
# neighbors for query_points[1], and that they are separated by a
# distance of 0.2
# (i.e. np.linalg.norm(query_points[1] - points[3]) == 2).
distances.append(bond[2])

avg_distance = np.mean(distances)

Let’s dig into this script a little bit. Our first step is creating a set of 100 points in a cubic box. Note that the shifting
done in the code above could also be accomplished using the Box.wrapmethod like so: box.wrap(np.random.
rand(num_points)*L). The result would appear different, because if plotted without considering periodicity, the
points would range from -L/2 to L/2 rather than from 0 to L. However, these two sets of points would be equivalent
in a periodic system.

We then generate an additional set of query_points and ask for neighbors using the query method. This function
accepts two arguments: a set of points, and a dict of query arguments. Query arguments are a central concept in
freud and represent a complete specification of the set of neighbors to be found. In general, the most common forms
of queries are those requesting either a fixed number of neighbors, as in the example above, or those requesting all
neighbors within a specific distance. For example, if we wanted to rerun the above example but instead find all bonds
of length less than or equal to 2, we would simply replace the for loop above with:

for bond in aq.query(query_points, dict(r_max=2)):
distances.append(bond[2])

Query arguments constitute a powerful method for specifying a query request. Many query arguments may be com-
bined for more specific purposes. A common use-case is finding all neighbors within a single set of points (i.e. setting
query_points = points in the above example). In this situation, however, it is typically not useful for a point
to find itself as a neighbor since it is trivially the closest point to itself and falls within any cutoff radius. To avoid this,
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we can use the exclude_ii query argument:

query_points = points
for bond in aq.query(query_points, dict(num_neighbors=4, exclude_ii=True)):

pass

The above example will find the 4 nearest neighbors to each point, excepting the point itself. A complete description
of valid query arguments can be found in Query API.

Neighbor Lists

Query arguments provide a simple but powerful language with which to express neighbor finding logic. Used in the
manner shown above, query can be used to express many calculations in a very natural, Pythonic way. By itself,
though, the API shown above is somewhat restrictive because the output of query is a generator. If you aren’t familiar
with generators, the important thing to know is that they can be looped over, but only once. Unlike objects like lists,
which you can loop over as many times as you like, once you’ve looped over a generator once, you can’t start again
from the beginning.

In the examples above, this wasn’t a problem because we simply iterated over the bonds once for a single calculation.
However, in many practical cases we may need to reuse the set of neighbors multiple times. A simple solution would
be to simply to store the bonds into a list as we loop over them. However, because this is such a common use-case,
freud provides its own containers for bonds: the freud.locality.NeighborList.

Queries can easily be used to generate NeighborList objects using their toNeighborList method:

query_result = aq.query(query_points, dict(num_neighbors=4, exclude_ii))
nlist = query_result.toNeighborList()

The resulting object provides a persistent container for bond data. Using NeighborLists, our original example
might instead look like this:

import numpy as np
import freud

L = 10
num_points = 100

points = np.random.rand(num_points)*L - L/2
box = freud.box.Box.cube(L)
aq = freud.locality.AABBQuery(box, points)

query_points = np.random.rand(num_points/10)*L - L/2
distances = []

# Here, we ask for the 4 nearest neighbors of each point in query_points.
query_result = aq.query(query_points, dict(num_neighbors=4)):
nlist = query_result.toNeighborList()
for (i, j) in nlist:

# Note that we have to wrap the bond vector before taking the norm;
# this is the simplest way to compute distances in a periodic system.
distances.append(np.linalg.norm(box.wrap(query_points[i] - points[j])))

avg_distance = np.mean(distances)

Note that in the above example we looped directly over the nlist and recomputed distances. However, the
query_result contained information about distances: here’s how we access that through the nlist:
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assert np.all(nlist.distances == distances)

The indices are also accessible through properties, or through a NumPy-like slicing interface:

assert np.all(nlist.query_point_indices == nlist[:, 0])
assert np.all(nlist.point_indices == nlist[:, 1])

Note that the query_points are always in the first column, while the points are in the second column. freud.
locality.NeighborList objects also store other properties; for instance, they may assign different weights
to different bonds. This feature can be used by, for example, freud.order.Steinhardt, which is typically
used for calculating Steinhardt order parameters, a standard tool for characterizing crystalline order. When provided
appropriately weighted neighbors, however, the class instead computes Minkowski structure metrics, which are much
more sensitive measures that can differentiate a wider array of crystal structures.

7.4.4 Pair Computations

Some computations in freud do not depend on bonds at all. For example, freud.density.GaussianDensity
creates a “continuous equivalent” of a system of points by placing normal distributions at each point’s location to
smear out its position, then summing the value of these distributions at a set of fixed grid points. This calculation can
be quite useful because it allows the application of various analysis tools like fast Fourier transforms, which require
regular grids. For the purposes of this tutorial, however, the importance of this class is that it is an example of a
calculation where neighbors are unimportant: the calculation is performed on a per-point basis only.

The much more common pattern in freud, though, is that calculations involve the local neighborhoods of points. To
support efficient, flexible computations of such quantities, various Compute classes essentially expose the same
API as the query interface demonstrated in the previous section. These PairCompute classes are designed to
mirror the querying functionality of freud as closely as possible.

As an example, let’s consider freud.density.LocalDensity, which calculates the density of points in the
local neighborhood of each point. Adapting our code from the previous section, the simplest usage of this class would
be as follows:

import numpy as np
import freud

L = 10
num_points = 100

points = np.random.rand(num_points)*L - L/2
box = freud.box.Box.cube(L)

# r_max specifies how far to search around each point for neighbors
r_max = 2

# For systems where the points represent, for instance, particles with a
# specific size, the diameter is used to add fractional volumes for
# neighbors that would be overlapping the sphere of radius r_max around
# each point.
diameter = 0.001

ld = freud.density.LocalDensity(r_max, diameter)
ld.compute(system=(box, points))

# Access the density.
ld.density
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Using the same example system we’ve been working with so far, we’ve now calculated an estimate for the number of
points in the neighborhood of each point. Since we already told the computation how far to search for neighbors based
on r_max, all we had to do was pass a tuple (box, points) to compute indicate where the points were located.

Binary Systems

Imagine that instead of a single set of points, we actually had two different types of points and we were interested in
finding the density of one set of points in the vicinity of the other. In that case, we could modify the above calculation
as follows:

import numpy as np
import freud
L = 10
num_points = 100
points = np.random.rand(num_points)*L - L/2
query_points = np.random.rand(num_points/10)*L - L/2

r_max = 2
diameter = 0.001

ld = freud.density.LocalDensity(r_max, diameter)
ld.compute(system=(box, points), query_points=query_points)

# Access the density.
ld.density

The choice of names names here is suggestive of exactly what this calculation is now doing. Internally, freud.
density.LocalDensity will search for all points that are within the cutoff distance r_max of every
query_point (essentially using the query interface we introduced previously) and use that to calculate ld.
density. Note that this means that ld.density now contains densities for every query_point, i.e. it is
of length 10, not 100. Moreover, recall that one of the features of the querying API is the specification of whether or
not to count particles as their own neighbors. PairCompute classes will attempt to make an intelligent determi-
nation of this for you; if you do not pass in a second set of query_points, they will assume that you are computing
with a single set of points and automatically exclude self-neighbors, but otherwise all neighbors will be included.

So far, we have included all points within a fixed radius; however, one might instead wish to consider the density in
some shell, such as the density between 1 and 2 distance units away. To address this need, you could simply adapt the
call to compute above as follows:

ld.compute(system=(box, points), query_points=query_points,
neighbors=dict(r_max=2, r_min=1))

The neighbors argument to PairCompute classes allows users to specify arbitary query arguments, making it
possible to easily modify freud calculations on-the-fly. The neighbors argument is actually more general than
query arguments you’ve seen so far: if query arguments are not precise enough to specify the exact set of neighbors
you want to compute with, you can instead provide a NeighborList directly

ld.compute(system=(box, points), query_points=query_points,
neighbors=nlist)

This feature allows users essentially arbitrary flexibility to specify the bonds that should be included in any bond-based
computation. A common use-case for this is constructing a NeighborList using freud.locality.Voronoi;
Voronoi constructions provide a powerful alternative method of defining neighbor relationships that can improve the
accuracy and robustness of certain calculations in freud.

You may have noticed in the last example that all the arguments are specified using keyword arguments. As the
previous examples have attempted to show, the query_points argument defines a second set of points to be used
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when performing calculations on binary systems, while the neighbors argument is how users can specify which
neighbors to consider in the calculation.

The system argument is what, to this point, we have been specifying as a tuple (box, points). However, we
don’t have to use this tuple. Instead, we can pass in any freud.locality.NeighborQuery, the central class in
freud’s querying infrastructure. In fact, you’ve already seen examples of freud.locality.NeighborQuery:
the freud.locality.AABBQuery object that we originally used to find neighbors. There are also a number of
other input types that can be converted via freud.locality.NeighborQuery.from_system(), see also
Reading Simulation Data for freud. Since these objects all contain a freud.box.Box and a set of points, they can
be directly passed to computations:

aq = freud.locality.AABBQuery(box, points)
ld.compute(system=aq, query_points=query_points, neighbors=nlist)

For more information on why you might want to use freud.locality.NeighborQuery objects instead of the
tuples, see Using freud Efficiently. For now, just consider this to be a way in which you can simplify your calls to
many freud computes in one script by storing (box, points) into another objects.

You’ve now covered the most important information needed to use freud! To recap, we’ve discussed how freud
handles periodic boundary conditions, the structure and usage of Compute classes, and methods for finding and
performing calculations with pairs of neighbors. For more detailed information on specific methods in freud, see the
Examples page or look at the API documentation for specific modules.

7.5 Examples

Examples are provided as Jupyter notebooks in a separate freud-examples repository. These notebooks may be
launched interactively on Binder or downloaded and run on your own system. Visualization of data is done via
Matplotlib and Bokeh, unless otherwise noted.

7.5.1 Key concepts

There are a few critical concepts, algorithms, and data structures that are central to all of freud. The freud.box.
Box class defines the concept of a periodic simulation box, and the freud.locality module defines methods
for finding nearest neighbors of particles. Since both of these are used throughout freud, we recommend reading the
Tutorial first, before delving into the workings of specific freud analysis modules.

freud.box.Box

In this notebook, we demonstrate the basic features of the Box class, including wrapping particles back into the box
under periodic boundary conditions. For more information, see the introduction to Periodic Boundary Conditions and
the freud.box documentation.
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Creating a Box object

Boxes may be constructed explicitly using all arguments. Such construction is useful when performing ad hoc analyses
involving custom boxes. In general, boxes are assumed to be 3D and orthorhombic unless otherwise specified.

[1]: import freud.box

# All of the below examples are valid boxes.
box = freud.box.Box(Lx=5, Ly=6, Lz=7, xy=0.5, xz=0.6, yz=0.7, is2D=False)
box = freud.box.Box(1, 3, 2, 0.3, 0.9)
box = freud.box.Box(5, 6, 7)
box = freud.box.Box(5, 6, is2D=True)
box = freud.box.Box(5, 6, xy=0.5, is2D=True)

From another Box object

The simplest case is simply constructing one freud box from another.

Note that all forms of creating boxes aside from the explicit method above use methods defined within the Box
class rather than attempting to overload the constructor itself.

[2]: box = freud.box.Box(1, 2, 3)
box2 = freud.box.Box.from_box(box)
print("The original box: \n\t{}".format(box))
print("The copied box: \n\t{}\n".format(box2))

# Boxes are always copied by value, not by reference
box.Lx = 5
print("The original box is modified: \n\t{}".format(box))
print("The copied box is not: \n\t{}\n".format(box2))

# Note, however, that box assignment creates a new object that
# still points to the original box object, so modifications to
# one are visible on the other.
box3 = box2
print("The new copy: \n\t{}".format(box3))
box2.Lx = 2
print("The new copy after the original is modified: \n\t{}".format(box3))
print("The modified original box: \n\t{}".format(box2))

The original box:
freud.box.Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

The copied box:
freud.box.Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

The original box is modified:
freud.box.Box(Lx=5.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

The copied box is not:
freud.box.Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

The new copy:
freud.box.Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

The new copy after the original is modified:
freud.box.Box(Lx=2.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

The modified original box:
freud.box.Box(Lx=2.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)
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From a matrix

A box can be constructed directly from the box matrix representation described above using the Box.from_matrix
method.

[3]: # Matrix representation. Note that the box vectors must represent
# a right-handed coordinate system! This translates to requiring
# that the matrix be upper triangular.
box = freud.box.Box.from_matrix([[1, 1, 0], [0, 1, 0.5], [0, 0, 0.5]])
print("This is a 3D box from a matrix: \n\t{}\n".format(box))

# 2D box
box = freud.box.Box.from_matrix([[1, 0, 0], [0, 1, 0], [0, 0, 0]])
print("This is a 2D box from a matrix: \n\t{}\n".format(box))

# Automatic matrix detection using from_box
box = freud.box.Box.from_box([[1, 1, 0], [0, 1, 0.5], [0, 0, 0.5]])
print("The box matrix was automatically detected: \n\t{}\n".format(box))

# Boxes can be numpy arrays as well
import numpy as np
box = freud.box.Box.from_box(np.array([[1, 1, 0], [0, 1, 0.5], [0, 0, 0.5]]))
print("Using a 3x3 numpy array: \n\t{}".format(box))

This is a 3D box from a matrix:
freud.box.Box(Lx=1.0, Ly=1.0, Lz=0.5, xy=1.0, xz=0.0, yz=1.0, is2D=False)

This is a 2D box from a matrix:
freud.box.Box(Lx=1.0, Ly=1.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, is2D=True)

The box matrix was automatically detected:
freud.box.Box(Lx=1.0, Ly=1.0, Lz=0.5, xy=1.0, xz=0.0, yz=1.0, is2D=False)

Using a 3x3 numpy array:
freud.box.Box(Lx=1.0, Ly=1.0, Lz=0.5, xy=1.0, xz=0.0, yz=1.0, is2D=False)

From a namedtuple or dict

A box can be also be constructed from any object that provides an attribute for Lx, Ly, Lz, xy, xz, and yz (or
some subset), such as a namedtuple. This method is suitable for passing in box objects constructed by some other
program, for example.

[4]: from collections import namedtuple
MyBox = namedtuple('mybox', ['Lx', 'Ly', 'Lz', 'xy', 'xz', 'yz'])

box = freud.box.Box.from_box(MyBox(Lx=5, Ly=3, Lz=2, xy=0, xz=0, yz=0))
print("Box from named tuple: \n\t{}\n".format(box))

box = freud.box.Box.from_box(MyBox(Lx=5, Ly=3, Lz=0, xy=0, xz=0, yz=0))
print("2D Box from named tuple: \n\t{}".format(box))

Box from named tuple:
freud.box.Box(Lx=5.0, Ly=3.0, Lz=2.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

2D Box from named tuple:
freud.box.Box(Lx=5.0, Ly=3.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, is2D=True)
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Similarly, construction is also possible using any object that supports key-value indexing, such as a dict.

[5]: box = freud.box.Box.from_box(dict(Lx=5, Ly=3, Lz=2))
print("Box from dict: \n\t{}".format(box))

Box from dict:
freud.box.Box(Lx=5.0, Ly=3.0, Lz=2.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

From a list

Finally, boxes can be constructed from any simple iterable that provides the elements in the correct order.

[6]: box = freud.box.Box.from_box((5, 6, 7, 0.5, 0, 0.5))
print("Box from tuple: \n\t{}\n".format(box))

box = freud.box.Box.from_box([5, 6])
print("2D Box from list: \n\t{}".format(box))

Box from tuple:
freud.box.Box(Lx=5.0, Ly=6.0, Lz=7.0, xy=0.5, xz=0.0, yz=0.5, is2D=False)

2D Box from list:
freud.box.Box(Lx=5.0, Ly=6.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, is2D=True)

Convenience APIs

We also provide convenience constructors for common geometries, namely square (2D) and cubic (3D) boxes.

[7]: cube_box = freud.box.Box.cube(L=5)
print("Cubic Box: \n\t{}\n".format(cube_box))

square_box = freud.box.Box.square(L=5)
print("Square Box: \n\t{}".format(square_box))

Cubic Box:
freud.box.Box(Lx=5.0, Ly=5.0, Lz=5.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

Square Box:
freud.box.Box(Lx=5.0, Ly=5.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, is2D=True)

Export

If you want to export or display the box, you can export box objects into their matrix or dictionary representations,
which provide completely specified descriptions of the box.

[8]: cube_box = freud.box.Box.cube(L=5)
cube_box.to_matrix()

[8]: array([[5., 0., 0.],
[0., 5., 0.],
[0., 0., 5.]])

[9]: cube_box.to_dict()
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[9]: {'Lx': 5.0,
'Ly': 5.0,
'Lz': 5.0,
'xy': 0.0,
'xz': 0.0,
'yz': 0.0,
'dimensions': 3}

Using boxes

Given a freud box object, you can query it for all its attributes.

[10]: box = freud.box.Box.from_matrix([[10, 0, 0], [0, 10, 0], [0, 0, 10]])
print("L_x = {}, L_y = {}, L_z = {}, xy = {}, xz = {}, yz = {}".format(

box.Lx, box.Ly, box.Lz, box.xy, box.xz, box.yz))

print("The length vector: {}".format(box.L))
print("The inverse length vector: ({:1.2f}, {:1.2f}, {:1.2f})".format(*[L for L in
→˓box.L_inv]))

L_x = 10.0, L_y = 10.0, L_z = 10.0, xy = 0.0, xz = 0.0, yz = 0.0
The length vector: [10. 10. 10.]
The inverse length vector: (0.10, 0.10, 0.10)

Boxes also support converting between fractional and absolute coordinates.

Note that the origin in real coordinates is defined at the center of the box. This means the fractional coordinate
range [0, 1] maps onto [−𝐿/2, 𝐿/2], not [0, 𝐿].

[11]: # Convert from fractional to absolute coordinates.
print(box.make_absolute([[0, 0, 0], [0.5, 0.5, 0.5], [0.8, 0.3, 1]]))
print()

# Convert from fractional to absolute coordinates and back.
print(box.make_fractional(box.make_absolute([[0, 0, 0], [0.5, 0.5, 0.5], [0.8, 0.3,
→˓1]])))

[[-5. -5. -5.]
[ 0. 0. 0.]
[ 3. -2. 5.]]

[[0. 0. 0. ]
[0.5 0.5 0.5]
[0.8 0.3 1. ]]

Finally (and most critically for enforcing periodicity), boxes support wrapping vectors from outside the box into the
box. The concept of periodicity and box wrapping is most easily demonstrated visually.

[12]: # Construct the box and get points for plotting
Lx = Ly = 10
xy = 0.5
box = freud.box.Box.from_matrix([[Lx, xy*Ly, 0], [0, Ly, 0], [0, 0, 0]])
box.plot()

[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7f2729d20518>

With periodic boundary conditions, what this actually represents is an infinite set of these boxes tiling space. For
example, you can locally picture this box as surrounding by a set of identical boxes.
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[13]: %matplotlib inline
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(9, 6))
box.plot(ax=ax)
for image in [[-1, 0, 0], [1, 0, 0], [0, -1, 0], [0, 1, 0]]:

box.plot(ax=ax, image=image, linestyle='dashed', color='gray')
plt.show()

Any particles in the original box will also therefore be seen as existing in all the neighboring boxes.

[14]: np.random.seed(0)
fractional_coords = np.zeros((5, 3))
fractional_coords[:, :2] = np.random.rand(5, 2)
particles = box.make_absolute(fractional_coords)

[15]: fig, ax = plt.subplots(figsize=(9, 6))

# Plot the points in the original box.
box.plot(ax=ax)
ax.scatter(particles[:, 0], particles[:, 1])

# Plot particles in each of the periodic boxes.
for image in [[-1, 0, 0], [1, 0, 0], [0, -1, 0], [0, 1, 0]]:

box.plot(ax=ax, image=image, linestyle='dashed', color='gray')
particle_images = box.unwrap(particles, image)
ax.scatter(particle_images[:, 0], particle_images[:, 1])

plt.show()
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Box wrapping takes points in the periodic images of a box, and brings them back into the original box. In this context,
that means that if we apply wrap to each of the sets of particles plotted above, they should all overlap.

[16]: fig, axes = plt.subplots(2, 2, figsize=(12, 8))
images = [[-1, 0, 0], [1, 0, 0], [0, -1, 0], [0, 1, 0]]

# Plot particles in each of the periodic boxes.
for ax, image in zip(axes.flatten(), images):

box.plot(ax=ax)
box.plot(ax=ax, image=image, linestyle='dashed', color='gray')
particle_images = box.unwrap(particles, image)
ax.scatter(particle_images[:, 0],

particle_images[:, 1],
label='Images')

wrapped_particle_images = box.wrap(particle_images)
ax.scatter(wrapped_particle_images[:, 0],

wrapped_particle_images[:, 1],
label='Wrapped')

ax.tick_params(axis="both", which="both", labelsize=14)
ax.legend()

plt.show()
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freud.locality.PeriodicBuffer: Unit Cell RDF

The PeriodicBuffer class is meant to replicate points beyond a single image while respecting box periodicity.
This example demonstrates how we can use this to compute the radial distribution function from a sample crystal’s
unit cell.

[1]: %matplotlib inline
import freud
import numpy as np
import matplotlib.pyplot as plt

Here, we create a box to represent the unit cell and put two points inside. We plot the box and points below.

[2]: box = freud.box.Box(Lx=2, Ly=2, xy=np.sqrt(1/3), is2D=True)
points = np.array([[-0.5, -0.5, 0], [0.5, 0.5, 0]])
system = freud.AABBQuery(box, points)
system.plot(ax=plt.gca())
plt.show()
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Next, we create a PeriodicBuffer instance and have it compute the “buffer” points that lie outside the first
periodicity. These positions are stored in the buffer_points attribute. The corresponding buffer_ids array
gives a mapping from the index of the buffer particle to the index of the particle it was replicated from, in the original
array of points. Finally, the buffer_box attribute returns a larger box, expanded from the original box to contain
the replicated points.

[3]: pbuff = freud.locality.PeriodicBuffer()
pbuff.compute(system=(box, points), buffer=6, images=True)
print(pbuff.buffer_points[:10], '...')

[[ 0.65470022 1.5 0. ]
[ 1.80940032 3.5 0. ]
[ 2.96410179 5.5 0. ]
[-3.96410131 -6.5 0. ]
[-2.80940104 -4.49999952 0. ]
[-1.65470016 -2.50000048 0. ]
[ 1.50000024 -0.5 0. ]
[ 2.65470076 1.5 0. ]
[ 3.80940032 3.5 0. ]
[ 4.96410179 5.5 0. ]] ...

Below, we plot the original unit cell and the replicated buffer points and buffer box.

[4]: system.plot(ax=plt.gca())
plt.scatter(pbuff.buffer_points[:, 0], pbuff.buffer_points[:, 1])
pbuff.buffer_box.plot(ax=plt.gca(), linestyle='dashed', color='gray')
plt.show()
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Finally, we can plot the radial distribution function (RDF) of this replicated system, using a value of r_max that is
larger than the size of the original box. This allows us to see the interaction of the original points with their replicated
neighbors from the buffer.

[5]: rdf = freud.density.RDF(bins=250, r_max=5)
rdf.compute(system=(pbuff.buffer_box, pbuff.buffer_points), query_points=points)
rdf.plot(ax=plt.gca())
plt.show()
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freud.locality.Voronoi

The freud.locality.Voronoi class uses voro++ to compute the Voronoi diagram of a set of points, while re-
specting periodic boundary conditions (which are not handled by scipy.spatial.Voronoi, documentation).

These examples are two-dimensional (with 𝑧 = 0 for all particles) for simplicity, but the Voronoi class works for
both 2D and 3D data.

[1]: import numpy as np
import freud
import matplotlib
import matplotlib.pyplot as plt

First, we generate some sample points.

[2]: points = np.array([
[-0.5, -0.5, 0],
[0.5, -0.5, 0],
[-0.5, 0.5, 0],
[0.5, 0.5, 0]])

plt.scatter(points[:, 0], points[:, 1])
plt.title('Points')
plt.xlim((-1, 1))
plt.ylim((-1, 1))
plt.gca().set_aspect('equal')
plt.show()

Now we create a box and a Voronoi compute object.

[3]: L = 2
box = freud.box.Box.square(L)
voro = freud.locality.Voronoi()

Next, we use the compute method to determine the Voronoi polytopes (cells) and the polytopes property to return
their coordinates. Note that we use freud’s method chaining here, where a compute method returns the compute
object.

[4]: cells = voro.compute((box, points)).polytopes
print(cells)
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[array([[-1., -1., 0.],
[ 0., -1., 0.],
[ 0., 0., 0.],
[-1., 0., 0.]]), array([[ 0., -1., 0.],
[ 1., -1., 0.],
[ 1., 0., 0.],
[ 0., 0., 0.]]), array([[-1., 0., 0.],
[ 0., 0., 0.],
[ 0., 1., 0.],
[-1., 1., 0.]]), array([[0., 0., 0.],
[1., 0., 0.],
[1., 1., 0.],
[0., 1., 0.]])]

The Voronoi class has built-in plotting methods for 2D systems.

[5]: plt.figure()
ax = plt.gca()
voro.plot(ax=ax)
ax.scatter(points[:, 0], points[:, 1], s=10, c='k')
plt.show()

This also works for more complex cases, such as this hexagonal lattice.

[6]: def hexagonal_lattice(rows=3, cols=3, noise=0, seed=None):
if seed is not None:

np.random.seed(seed)
# Assemble a hexagonal lattice
points = []
for row in range(rows*2):

for col in range(cols):
x = (col + (0.5 * (row % 2)))*np.sqrt(3)
y = row*0.5
points.append((x, y, 0))

points = np.asarray(points)
points += np.random.multivariate_normal(mean=np.zeros(3), cov=np.eye(3)*noise,

→˓size=points.shape[0])
# Set z=0 again for all points after adding Gaussian noise
points[:, 2] = 0

(continues on next page)
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(continued from previous page)

# Wrap the points into the box
box = freud.box.Box(Lx=cols*np.sqrt(3), Ly=rows, is2D=True)
points = box.wrap(points)
return box, points

[7]: # Compute the Voronoi diagram and plot
box, points = hexagonal_lattice()
voro = freud.locality.Voronoi()
voro.compute((box, points))
voro

[7]:

For noisy data, we see that the Voronoi diagram can change substantially. We perturb the positions with 2D Gaussian
noise. Coloring by the number of sides of each Voronoi cell, we can see patterns in the defects: 5-gons and 7-gons
tend to pair up.

[8]: # Compute the Voronoi diagram
box, points = hexagonal_lattice(rows=12, cols=8, noise=0.03, seed=2)
voro = freud.locality.Voronoi()
voro.compute((box, points))

# Plot Voronoi with points and a custom cmap
plt.figure()
ax = plt.gca()
voro.plot(ax=ax, cmap='RdBu')
ax.scatter(points[:, 0], points[:, 1], s=2, c='k')
plt.show()
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We can also compute the volumes of the Voronoi cells. Here, we plot them as a histogram:

[9]: plt.hist(voro.volumes)
plt.title('Voronoi cell volumes')
plt.show()

The Voronoi class also computes a freud.locality.NeighborList, where particles are neighbors if they
share an edge in the Voronoi diagram. The NeighborList effectively represents the bonds in the Delaunay trian-
gulation. The neighbors are weighted by the length (in 2D) or area (in 3D) between them. The neighbor weights are
stored in voro.nlist.weights.

[10]: nlist = voro.nlist
line_data = np.asarray([[points[i],

points[i] + box.wrap(points[j] - points[i])]
for i, j in nlist])[:, :, :2]

line_collection = matplotlib.collections.LineCollection(line_data, alpha=0.2)
plt.figure()
ax = plt.gca()
voro.plot(ax=ax, cmap='RdBu')

(continues on next page)
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(continued from previous page)

ax.add_collection(line_collection)
plt.show()

7.5.2 Analysis Modules

These introductory examples showcase the functionality of specific modules in freud, showing how they can be used
to perform specific types of analyses of simulations.

freud.cluster.Cluster and freud.cluster.ClusterProperties

The freud.cluster module determines clusters of points and computes cluster quantities like centers of mass,
gyration tensors, and radii of gyration. The example below generates random points, and shows that they form clusters.
This case is two-dimensional (with 𝑧 = 0 for all particles) for simplicity, but the cluster module works for both 2D
and 3D simulations.

[1]: import numpy as np
import freud
import matplotlib.pyplot as plt

First, we generate a box and random points to cluster.

[2]: box = freud.Box.square(L=6)
points = np.empty(shape=(0, 2))
for center_point in [(-1.8, 0), (1.5, 1.5), (-0.8, -2.8), (1.5, 0.5)]:

points = np.concatenate(
(points, np.random.multivariate_normal(mean=center_point, cov=0.08*np.eye(2),

→˓size=(100,))))
points = np.hstack((points, np.zeros((points.shape[0], 1))))
points = box.wrap(points)
system = freud.AABBQuery(box, points)
system.plot(ax=plt.gca(), s=10)
plt.title('Raw points before clustering', fontsize=20)
plt.gca().tick_params(axis='both', which='both', labelsize=14, size=8)
plt.show()
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Now we create a box and a cluster compute object.

[3]: cl = freud.cluster.Cluster()

Next, we use the computeClusters method to determine clusters and the clusterIdx property to return their
identities. Note that we use freud’s method chaining here, where a compute method returns the compute object.

[4]: cl.compute(system, neighbors={'r_max': 1.0})
print(cl.cluster_idx)

[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[5]: fig, ax = plt.subplots(1, 1, figsize=(9, 6))
for cluster_id in range(cl.num_clusters):

cluster_system = freud.AABBQuery(system.box, system.points[cl.cluster_
→˓keys[cluster_id]])

cluster_system.plot(ax=ax, s=10, label="Cluster {}".format(cluster_id))
print("There are {} points in cluster {}.".format(len(cl.cluster_keys[cluster_

→˓id]), cluster_id))

ax.set_title('Clusters identified', fontsize=20)
ax.legend(loc='best', fontsize=14)
ax.tick_params(axis='both', which='both', labelsize=14, size=8)
plt.show()

There are 200 points in cluster 0.

(continues on next page)
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There are 100 points in cluster 1.
There are 100 points in cluster 2.

We may also compute the clusters’ centers of mass and gyration tensor using the ClusterProperties class.

[6]: clp = freud.cluster.ClusterProperties()
clp.compute(system, cl.cluster_idx);

Plotting these clusters with their centers of mass, with size proportional to the number of clustered points:

[7]: fig, ax = plt.subplots(1, 1, figsize=(9, 6))

for i in range(cl.num_clusters):
cluster_system = freud.AABBQuery(system.box, system.points[cl.cluster_keys[i]])
cluster_system.plot(ax=ax, s=10, label="Cluster {}".format(i))

for i, c in enumerate(clp.centers):
ax.scatter(c[0], c[1], s=len(cl.cluster_keys[i]),

label="Cluster {} Center".format(i))

plt.title('Center of mass for each cluster', fontsize=20)
plt.legend(loc='best', fontsize=14)
plt.gca().tick_params(axis='both', which='both', labelsize=14, size=8)
plt.gca().set_aspect('equal')
plt.show()
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The 3x3 gyration tensors𝐺 can also be computed for each cluster. For this two-dimensional case, the 𝑧 components of
the gyration tensor are zero. The gyration tensor can be used to determine the principal axes of the cluster and radius
of gyration along each principal axis. Here, we plot the gyration tensor’s eigenvectors with length corresponding to
the square root of the eigenvalues (the singular values).

[8]: fig, ax = plt.subplots(1, 1, figsize=(9, 6))

for i in range(cl.num_clusters):
cluster_system = freud.AABBQuery(system.box, system.points[cl.cluster_keys[i]])
cluster_system.plot(ax=ax, s=10, label="Cluster {}".format(i))

for i, c in enumerate(clp.centers):
ax.scatter(c[0], c[1], s=len(cl.cluster_keys[i]),

label="Cluster {} Center".format(i))

for cluster_id in range(cl.num_clusters):
com = clp.centers[cluster_id]
G = clp.gyrations[cluster_id]
evals, evecs = np.linalg.eig(G[:2, :2])
arrows = np.sqrt(evals) * evecs
for arrow in arrows.T:

plt.arrow(com[0], com[1], arrow[0], arrow[1], width=0.05, color='k')

plt.title('Eigenvectors of the gyration tensor for each cluster', fontsize=20)
plt.legend(loc='best', fontsize=14)
ax.tick_params(axis='both', which='both', labelsize=14, size=8)
ax.set_aspect('equal')
plt.show()
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freud.diffraction.DiffractionPattern

The freud.diffraction.DiffractionPattern class computes a diffraction pattern, which is a 2D image
of the static structure factor 𝑆(�⃗�) of a set of points.

[1]: import freud
import matplotlib.pyplot as plt
import numpy as np
import rowan

First, we generate a sample system, a face-centered cubic crystal with some noise.

[2]: box, points = freud.data.UnitCell.fcc().generate_system(num_replicas=10, sigma_
→˓noise=0.02)

Now we create a DiffractionPattern compute object.

[3]: dp = freud.diffraction.DiffractionPattern(grid_size=512, output_size=512)

Next, we use the compute method and plot the result. We use a view orientation with the identity quaternion [1,
0, 0, 0] so the view is aligned down the z-axis.

[4]: fig, ax = plt.subplots(figsize=(4, 4), dpi=150)
dp.compute((box, points), view_orientation=[1, 0, 0, 0])
dp.plot(ax)
plt.show()
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We can also use a random quaternion for the view orientation to see what the diffraction looks like from another axis.

[5]: fig, ax = plt.subplots(figsize=(4, 4), dpi=150)
np.random.seed(0)
view_orientation = rowan.random.rand()
dp.compute((box, points), view_orientation=view_orientation)
print('Looking down the axis:', rowan.rotate(view_orientation, [0, 0, 1]))
dp.plot(ax)
plt.show()

Looking down the axis: [0.75707404 0.33639217 0.56007071]
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The DiffractionPattern object also provides �⃗� vectors in the original 3D space and the magnitudes of 𝑘𝑥 and
𝑘𝑦 in the 2D projection along the view axis.

[6]: print('Magnitudes of k_x and k_y along the plot axes:')
print(dp.k_values[:5], '...', dp.k_values[-5:])

Magnitudes of k_x and k_y along the plot axes:
[-25.6 -25.5 -25.4 -25.3 -25.2] ... [25.1 25.2 25.3 25.4 25.5]

[7]: print('3D k-vectors corresponding to each pixel of the diffraction image:')
print('Array shape:', dp.k_vectors.shape)
print('Center value: k =', dp.k_vectors[dp.output_size//2, dp.output_size//2, :])
print('Top-left value: k =', dp.k_vectors[0, 0, :])

3D k-vectors corresponding to each pixel of the diffraction image:
Array shape: (512, 512, 3)
Center value: k = [0. 0. 0.]
Top-left value: k = [ 19.03669015 -29.77826902 -7.84723661]

We can also measure the diffraction of a random system (note: this is an ideal gas, not a liquid-like system, because
the particles have no volume exclusion or repulsion). Note that the peak at �⃗� = 0 persists. The diffraction pattern
returned by this class is normalized by dividing by 𝑁2, so 𝑆(�⃗� = 0) = 1 after normalization.

[8]: box, points = freud.data.make_random_system(box_size=10, num_points=10000)
fig, ax = plt.subplots(figsize=(4, 4), dpi=150)

(continues on next page)
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dp.compute((box, points))
dp.plot(ax)
plt.show()

freud.density.CorrelationFunction

Orientational Ordering in 2D

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of parti-
cles with other particles. This example shows how correlation functions can be used to measure orientational order in
2D.

[1]: import numpy as np
import freud
import matplotlib.pyplot as plt
import matplotlib.cm
from matplotlib.colors import Normalize

This helper function will make plots of the data we generate in this example.

[2]: def plot_data(title, points, angles, values, box, cf, s=200):
cmap = matplotlib.cm.viridis

(continues on next page)
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norm = Normalize(vmin=-np.pi/4, vmax=np.pi/4)
plt.figure(figsize=(16, 6))
plt.subplot(121)
for point, angle, value in zip(points, angles, values):

plt.scatter(point[0], point[1], marker=(4, 0, np.rad2deg(angle)+45),
edgecolor='k', c=[cmap(norm(angle))], s=s)

plt.title(title)
plt.gca().set_xlim([-box.Lx/2, box.Lx/2])
plt.gca().set_ylim([-box.Ly/2, box.Ly/2])
plt.gca().set_aspect('equal')
sm = plt.cm.ScalarMappable(cmap='viridis', norm=norm)
sm.set_array(angles)
plt.colorbar(sm)
plt.subplot(122)
plt.title('Orientation Spatial Autocorrelation Function')
cf.plot(ax=plt.gca())
plt.xlabel(r'$r$')
plt.ylabel(r'$C(r)$')
plt.show()

First, let’s generate a 2D structure with perfect orientational order and slight positional disorder (the particles are not
perfectly on a grid, but they are perfectly aligned). The color of the particles corresponds to their angle of rotation, so
all the particles will be the same color to begin with.

We create a freud.density.CorrelationFunction object to compute the correlation functions. Given a
particle orientation 𝜃, we compute its complex orientation value (the quantity we are correlating) as 𝑠 = 𝑒4𝑖𝜃, to
account for the fourfold symmetry of the particles. We will compute the correlation function 𝐶(𝑟) = ⟨𝑠*1(0) · 𝑠2(𝑟)⟩
by taking the average over all particle pairs and binning the results into a histogram by the distance 𝑟 between the
particles.

When we compute the correlations between particles, the complex conjugate of the values array is used internally
for the query points. This way, if 𝜃1 is close to 𝜃2, then we get

(︀
𝑒4𝑖𝜃1

)︀* · (︀𝑒4𝑖𝜃2)︀ = 𝑒4𝑖(𝜃2−𝜃1) ≈ 𝑒0 = 1.

This system has perfect spatial correlation of the particle orientations, so we see 𝐶(𝑟) = 1 for all values of 𝑟.

[3]: def make_particles(L, repeats):
uc = freud.data.UnitCell.square()
return uc.generate_system(num_replicas=repeats, scale=L/repeats, sigma_noise=5e-

→˓3*L)

# Make a small system
box, points = make_particles(L=5, repeats=20)

# All the particles begin with their orientation at 0
angles = np.zeros(len(points))
values = np.array(np.exp(angles * 4j))

# Create the CorrelationFunction compute object and compute the correlation function
cf = freud.density.CorrelationFunction(bins=25, r_max=box.Lx/2.01)
cf.compute(system=(box, points), values=values,

query_points=points, query_values=values)

plot_data('Particles before introducing Orientational Disorder',
points, angles, values, box, cf)
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Now we will generate random angles from −𝜋
4 to 𝜋

4 , which orients our squares randomly. The four-fold symmetry of
the squares means that the space of unique angles is restricted to a range of 𝜋

2 . Again, we compute a complex value
for each particle, 𝑠 = 𝑒4𝑖𝜃.

Because we have purely random orientations, we expect no spatial correlations in the plot above. As we see, 𝐶(𝑟) ≈ 0
for all 𝑟.

[4]: # Change the angles to values randomly drawn from a uniform distribution
angles = np.random.uniform(-np.pi/4, np.pi/4, size=len(points))
values = np.exp(angles * 4j)

# Recompute the correlation functions
cf.compute(system=(box, points), values=values,

query_points=points, query_values=values)

plot_data('Particles with Orientational Disorder',
points, angles, values, box, cf)

The plot below shows what happens when we intentionally introduce a correlation length by adding a spatial pattern
to the particle orientations. At short distances, the correlation is very high. As 𝑟 increases, the oppositely-aligned part
of the pattern some distance away causes the correlation to drop.
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[5]: # Use angles that vary spatially in a pattern
angles = np.pi/4 * np.cos(2*np.pi*points[:, 0]/box.Lx)
values = np.exp(angles * 4j)

# Recompute the correlation functions
cf.compute(system=(box, points), values=values,

query_points=points, query_values=values)

plot_data('Particles with Spatially Correlated Orientations',
points, angles, values, box, cf)

In the larger system shown below, we see the spatial autocorrelation rise and fall with damping oscillations.

[6]: # Make a large system
box, points = make_particles(L=10, repeats=40)

# Use angles that vary spatially in a pattern
angles = np.pi/4 * np.cos(8*np.pi*points[:, 0]/box.Lx)
values = np.exp(angles * 4j)

# Create a CorrelationFunction compute object
cf = freud.density.CorrelationFunction(bins=25, r_max=box.Lx/2.01)
cf.compute(system=(box, points), values=values,

query_points=points, query_values=values)

plot_data('Larger System with Spatially Correlated Orientations',
points, angles, values, box, cf, s=80)
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freud.density.GaussianDensity

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of parti-
cles with other particles. In this notebook, we demonstrate freud’s Gaussian density calculation, which provides a
way to interpolate particle configurations onto a regular grid in a meaningful way that can then be processed by other
algorithms that require regularity, such as a Fast Fourier Transform.

[1]: import numpy as np
from scipy import stats
import freud
import matplotlib.pyplot as plt

To illustrate the basic concept, consider a toy example: a simple set of point particles with unit mass on a line. For
analytical purposes, the standard way to accomplish this would be using Dirac delta functions.

[2]: n_p = 10000
np.random.seed(129)
x = np.linspace(0, 1, n_p)
y = np.zeros(n_p)
points = np.random.rand(10)
y[(points*n_p).astype('int')] = 1
plt.plot(x, y);
plt.show()
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However, delta functions can be cumbersome to work with, so we might instead want to smooth out these particles.
One option is to instead represent particles as Gaussians centered at the location of the points. In that case, the total
particle density at any point in the interval [0, 1] represented above would be based on the sum of the densities of those
Gaussians at those points.

[3]: # Note that we use a Gaussian with a small standard deviation
# to emphasize the differences on this small scale
dists = [stats.norm(loc=i, scale=0.1) for i in points]
y_gaussian = 0
for dist in dists:

y_gaussian += dist.pdf(x)
plt.plot(x, y_gaussian);
plt.show()

The goal of the GaussianDensity class is to perform the same interpolation for points on a 2D or 3D grid, accounting
for Box periodicity.

[4]: N = 1000 # Number of points
L = 10 # Box length

box, points = freud.data.make_random_system(L, N, is2D=True, seed=0)

(continues on next page)
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(continued from previous page)

aq = freud.AABBQuery(box, points)
gd = freud.density.GaussianDensity(L*L, L/3, 1)
gd.compute(aq)

fig, axes = plt.subplots(1, 2, figsize=(14, 6))
aq.plot(ax=axes[0])
gd.plot(ax=axes[1])
plt.show()

The effects are much more striking if we explicitly construct our points to be centered at certain regions.

[5]: N = 1000 # Number of points
L = 10 # Box length
box = freud.box.Box.square(L)
centers = np.array([[L/4, L/4, 0],

[-L/4, L/4, 0],
[L/4, -L/4, 0],
[-L/4, -L/4, 0]])

points = []
for center in centers:

points.append(np.random.multivariate_normal(center, cov=np.diag([1, 1, 0]),
→˓size=(int(N/4),)))
points = box.wrap(np.concatenate(points))
aq = freud.AABBQuery(box, points)

gd = freud.density.GaussianDensity(L*L, L/3, 1)
gd.compute(aq)

fig, axes = plt.subplots(1, 2, figsize=(14, 6))
aq.plot(ax=axes[0])
gd.plot(ax=axes[1])
plt.show()
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freud.density.LocalDensity

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of parti-
cles with other particles. In this notebook, we demonstrate freud’s local density calculation, which can be used to
characterize the particle distributions in some systems. In this example, we consider a toy example of calculating the
particle density in the vicinity of a set of other points. This can be visualized as, for example, billiard balls on a table
with certain regions of the table being stickier than others. In practice, this method could be used for analyzing, e.g,
binary systems to determine how densely one species packs close to the surface of the other.

[1]: import numpy as np
import freud
import matplotlib.pyplot as plt
from matplotlib import patches

[2]: # Define some helper plotting functions.
def add_patches(ax, points, radius=1, fill=False, color="#1f77b4", ls="solid",
→˓lw=None):

"""Add set of points as patches with radius to the provided axis"""
for pt in points:

p = patches.Circle(pt, fill=fill, linestyle=ls, radius=radius,
facecolor=color, edgecolor=color, lw=lw)

ax.add_patch(p)

def plot_lattice(box, points, radius=1, ls="solid", lw=None):
"""Helper function for plotting points on a lattice."""
fig, ax = plt.subplots(1, 1, figsize=(9, 9))
box.plot(ax=ax)
add_patches(ax, points, radius, ls=ls, lw=lw)
return fig, ax

Let us consider a set of regions on a square lattice.

[3]: area = 2
radius = np.sqrt(area/np.pi)
spot_area = area*100

(continues on next page)
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(continued from previous page)

spot_radius = np.sqrt(spot_area/np.pi)
num = 6
scale = num*4
uc = freud.data.UnitCell(freud.Box.square(1), [[0.5, 0.5, 0]])
box, spot_centers = uc.generate_system(num, scale=scale)
fig, ax = plot_lattice(box, spot_centers, spot_radius, ls="dashed", lw=2.5)
plt.tick_params(axis="both", which="both", labelsize=14)
plt.show()

Now let’s add a set of points to this box. Points are added by drawing from a normal distribution centered at each
of the regions above. For demonstration, we will assume that each region has some relative “attractiveness,” which
is represented by the covariance in the normal distributions used to draw points. Specifically, as we go up and to the
right, the covariance increases proportional to the distance from the lower right corner of the box.

[4]: points = []
fractional_distances_to_corner = np.linalg.norm(box.make_fractional(spot_centers),
→˓axis=-1)
cov_basis = 20 * fractional_distances_to_corner
for i, p in enumerate(spot_centers):

(continues on next page)
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np.random.seed(i)
cov = cov_basis[i]*np.diag([1, 1, 0])
points.append(

np.random.multivariate_normal(p, cov, size=(50,)))
points = box.wrap(np.concatenate(points))

[5]: fig, ax = plot_lattice(box, spot_centers, spot_radius, ls="dashed", lw=2.5)
plt.tick_params(axis="both", which="both", labelsize=14)
add_patches(ax, points, radius, True, 'k', lw=None)
plt.show()

We see that the density decreases as we move up and to the right. In order to compute the actual densities, we can
leverage the LocalDensity class. The class allows you to specify a set of query points around which the number
of other points is computed. These other points can, but need not be, distinct from the query points. In our case, we
want to use the blue regions as our query points with the small black dots as our data points.

When we construct the LocalDensity class, there are two arguments. The first is the radius from the query points
within which particles should be included in the query point’s counter. The second is the circumsphere diameter of the
data points, not the query points. This distinction is critical for getting appropriate density values, since these values
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are used to actually check cutoffs and calculate the density.

[6]: density = freud.density.LocalDensity(spot_radius, radius)
density.compute(system=(box, points), query_points=spot_centers);

[7]: fig, axes = plt.subplots(1, 2, figsize=(14, 6))

for i, data in enumerate([density.num_neighbors, density.density]):
poly = np.poly1d(np.polyfit(cov_basis, data, 1))
axes[i].tick_params(axis="both", which="both", labelsize=14)
axes[i].scatter(cov_basis, data)
x = np.linspace(*axes[i].get_xlim(), 30)
axes[i].plot(x, poly(x), label="Best fit")
axes[i].set_xlabel("Covariance", fontsize=16)

axes[0].set_ylabel("Number of neighbors", fontsize=16);
axes[1].set_ylabel("Density", fontsize=16);
plt.show()

As expected, we see that increasing the variance in the number of points centered at a particular query point decreases
the total density at that point. The trend is noisy since we are randomly sampling possible positions, but the general
behavior is clear.

freud.density.RDF: Accumulating g(r) for a Fluid

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of parti-
cles with other particles. This example demonstrates the calculation of the radial distribution function 𝑔(𝑟) for a fluid,
averaged over multiple frames.

[1]: import numpy as np
import freud
import matplotlib.pyplot as plt

data_path = "data/phi065"
box_data = np.load("{}/box_data.npy".format(data_path))
pos_data = np.load("{}/pos_data.npy".format(data_path))

(continues on next page)
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(continued from previous page)

def plot_rdf(box_arr, points_arr, prop, r_max=10, bins=100, label=None, ax=None):
"""Helper function for plotting RDFs."""
if ax is None:

fig, ax = plt.subplots(1, 1, figsize=(12, 8))
ax.set_title(prop, fontsize=16)

rdf = freud.density.RDF(bins, r_max)
for box, points in zip(box_arr, points_arr):

rdf.compute(system=(box, points), reset=False)
if label is not None:

ax.plot(rdf.bin_centers, getattr(rdf, prop), label=label)
ax.legend()

else:
ax.plot(rdf.bin_centers, getattr(rdf, prop))

return ax

Here, we show the difference between the RDF of one frame and an accumulated (averaged) RDF from several frames.
Including more frames makes the plot smoother.

[2]: # Compute the RDF for the last frame
box_arr = [box_data[-1].tolist()]
pos_arr = [pos_data[-1]]
ax = plot_rdf(box_arr, pos_arr, 'rdf', label='One frame')

# Compute the RDF for the last 20 frames
box_arr = [box.tolist() for box in box_data[-20:]]
pos_arr = pos_data[-20:]
ax = plot_rdf(box_arr, pos_arr, 'rdf', label='Last 20 frames', ax=ax)

plt.show()
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The difference between accumulate (which should be called on a series of frames) and compute (meant for a
single frame) is more striking for smaller bin sizes, which are statistically noisier.

[3]: # Compute the RDF for the last frame
box_arr = [box_data[-1].tolist()]
pos_arr = [pos_data[-1]]
ax = plot_rdf(box_arr, pos_arr, 'rdf', bins=1000, label='One frame')

# Compute the RDF for the last 20 frames
box_arr = [box.tolist() for box in box_data[-20:]]
pos_arr = pos_data[-20:]
ax = plot_rdf(box_arr, pos_arr, 'rdf', bins=1000, label='Last 20 frames', ax=ax)

plt.show()
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freud.density.RDF: Choosing Bin Widths

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of par-
ticles with other particles. This example demonstrates the calculation of the radial distribution function 𝑔(𝑟) using
different bin sizes.

[1]: import numpy as np
import freud
import matplotlib.pyplot as plt

[2]: # Define some helper plotting functions.
def plot_rdf(box, points, prop, r_max=3.5, bins_array=[20, 75, 3000]):

"""Helper function for plotting RDFs."""
fig, axes = plt.subplots(1, len(bins_array), figsize=(16, 3))
for i, bins in enumerate(bins_array):

rdf = freud.density.RDF(bins, r_max)
rdf.compute(system=(box, points))
axes[i].plot(rdf.bin_centers, getattr(rdf, prop))
axes[i].set_title("Bin width: {:.3f}".format(r_max/bins), fontsize=16)

plt.show()

To start, we construct and visualize a set of points sitting on a simple square lattice.

[3]: box, points = freud.data.UnitCell.square().generate_system(5, scale=2)
aq = freud.AABBQuery(box, points)

(continues on next page)
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(continued from previous page)

aq.plot(ax=plt.gca())
plt.show()

If we try to compute the RDF directly from this, we will get something rather uninteresting since we have a perfect
crystal. Indeed, we will observe that as we bin more and more finely, we approach the true behavior of the RDF for
perfect crystals, which is a simple delta function.

[4]: plot_rdf(box, points, 'rdf')

In these RDFs, we see two sharply defined peaks, with the first corresponding to the nearest neighbors on the lattice
(which are all at a distance 2 from each other), and the second, smaller peak caused by the particles on the diagonal
(which sit at distance

√
22 + 22 ≈ 2.83.

However, in more realistic systems, we expect that the lattice will not be perfectly formed. In this case, the RDF will
exhibit more features. To demonstrate this fact, we reconstruct the square lattice of points from above, but we now
introduce some noise into the system.

[5]: box, clean_points = freud.data.UnitCell.square().generate_system(10, scale=2, sigma_
→˓noise=0)
box, noisy_points = freud.data.UnitCell.square().generate_system(10, scale=2, sigma_
→˓noise=0.1)
aq_clean = freud.AABBQuery(box, clean_points)
aq_clean.plot(ax=plt.gca(), c='k', s=3)
aq_noisy = freud.AABBQuery(box, noisy_points)
deviations = np.linalg.norm(box.wrap(noisy_points-clean_points), axis=-1)
_, sc = aq_noisy.plot(ax=plt.gca(), c=deviations)
cbar = plt.colorbar(sc)

(continues on next page)
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cbar.set_label('Distance from lattice site')
plt.show()

[6]: plot_rdf(box, noisy_points, 'rdf')

In this RDF, we see the same rough features as we saw with the perfect lattice. However, the signal is much noisier,
and in fact we see that increasing the number of bins essentially leads to overfitting of the data. As a result, we have
to be careful with how we choose to bin our data when constructing the RDF object.

An alternative route for avoiding this problem can be using the cumulative RDF instead. The relationship between the
cumulative RDF and the RDF is akin to that between a cumulative density and a probability density function, providing
a measure of the total density of particles experienced up to some distance rather than the value at that distance. Just
as a CDF can help avoid certain mistakes common to plotting a PDF, plotting the cumulative RDF may be helpful in
some cases. Here, we see that decreasing the bin size slightly alters the features of the plot, but only in very minor
way (i.e. decreasing the smoothness of the line due to small jitters).

[7]: plot_rdf(box, noisy_points, 'n_r')
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freud.environment.AngularSeparation

The freud.environment module analyzes the local environments of particles. The freud.environment.
AngularSeparation class enables direct measurement of the relative orientations of particles.

[1]: import freud
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['axes.titlepad'] = 20
from mpl_toolkits.mplot3d import Axes3D
import rowan # for quaternion math, see rowan.readthedocs.io for more information.

In order to work with orientations in freud, we need to do some math with quaternions. If you are unfamiliar with
quaternions, you can read more about their definition and how they can be used to represent rotations. For the purpose
of this tutorial, just consider them as 4D vectors, and know that the set of normalized (i.e. unit norm) 4D vectors can
be used to represent rotations in 3D. In fact, there is a 1-1 mapping between normalized quaternions and 3x3 rotation
matrices. Quaternions are more computationally convenient, however, because they only require storing 4 numbers
rather than 9, and they can be much more easily chained together. The rowan library (rowan.readthedocs.io) defines
many useful operations using quaternions, such as the rotations of vectors using quaternions instead of matrices.

Neighbor Angles

One usage of the AngularSeparation class is to compute angles between neighboring particles. To show how this
works, we generate a simple configuration of particles with random orientations associated with each point.

[2]: uc = freud.data.UnitCell.sc()
box, positions = uc.generate_system(5)
N = len(positions)

# Generate random, correlated particle orientations by taking identity
# quaternions and slightly rotating them in a random direction
np.random.seed(0)
interpolate_amount = 0.2
identity_quats = np.array([[1, 0, 0, 0]] * N)
ref_orientations = rowan.interpolate.slerp(

identity_quats, rowan.random.rand(N), interpolate_amount)
orientations = rowan.interpolate.slerp(

identity_quats, rowan.random.rand(N), interpolate_amount)

[3]: # To show orientations, we use arrows rotated by the quaternions.
ref_arrowheads = rowan.rotate(ref_orientations, np.array([1, 0, 0]))
arrowheads = rowan.rotate(orientations, np.array([1, 0, 0]))

fig = plt.figure(figsize=(12, 6))
ref_ax = fig.add_subplot(121, projection='3d')
ax = fig.add_subplot(122, projection='3d')
ref_ax.quiver3D(positions[:, 0], positions[:, 1], positions[:, 2],

ref_arrowheads[:, 0], ref_arrowheads[:, 1], ref_arrowheads[:, 2])
ax.quiver3D(positions[:, 0], positions[:, 1], positions[:, 2],

arrowheads[:, 0], arrowheads[:, 1], arrowheads[:, 2])
ref_ax.set_title("Reference orientations", fontsize=16)
ax.set_title("Orientations", fontsize=16)
plt.show()
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We can now use the AngularSeparation class to compare the orientations in these two systems.

[4]: # For simplicity, we'll assume that our "particles" are completely
# asymmetric, i.e. there are no rotations that map the particle
# back onto itself. If we had a regular polyhedron, then we would
# want to specify all the quaternions that rotate that polyhedron
# onto itself.
equiv_orientations = np.array([[1, 0, 0, 0]])
ang_sep = freud.environment.AngularSeparationNeighbor()
ang_sep.compute(system=(box, positions),

orientations=orientations,
query_points=positions,
query_orientations=ref_orientations,
equiv_orientations=equiv_orientations,
neighbors={'num_neighbors': 12})

# Convert angles from radians to degrees and plot histogram
neighbor_angles = np.rad2deg(ang_sep.angles)
plt.hist(neighbor_angles)
plt.title('Histogram of angular separations between neighbors')
plt.xlabel('Angular separation (degrees)')
plt.ylabel('Frequency')
plt.show()
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Global Angles

Alternatively, the AngularSeparationGlobal class can also be used to compute the orientation of all points in the system
relative to some global set of orientations. In this case, we simply provide a set of global quaternions that we want
to consider. For simplicity, let’s consider 180∘ rotations about each of the coordinate axes, which have very simple
quaternion representations.

[5]: global_orientations = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0,
→˓1]])
ang_sep = freud.environment.AngularSeparationGlobal()
ang_sep.compute(global_orientations, ref_orientations, equiv_orientations)
global_angles = np.rad2deg(ang_sep.angles)

[6]: plt.hist(global_angles[:, 0])
plt.title('Histogram of angular separation relative to identity quaternion')
plt.xlabel('Angular separation (degrees)')
plt.ylabel('Frequency')
plt.show()
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As a simple check, we can ensure that for the identity quaternion (1, 0, 0, 0), which performs a 0∘ rotation, the angles
between the reference orientations and that quaternion are equal to the original angles of rotation of those quaternions
(i.e. how much those orientations were already rotated relative to the identity).

[7]: ref_axes, ref_angles = rowan.to_axis_angle(ref_orientations)
np.allclose(global_angles[:, 0], np.rad2deg(ref_angles), rtol=1e-4)

[7]: True

freud.environment.BondOrder

Computing Bond Order Diagrams

The freud.environment module analyzes the local environments of particles. In this example, the freud.
environment.BondOrder class is used to plot the bond order diagram (BOD) of a system of particles.

[1]: import numpy as np
import freud
import matplotlib.pyplot as plt
import matplotlib
from mpl_toolkits.mplot3d import Axes3D

Setup

Our sample data will be taken from an face-centered cubic (FCC) structure. The array of points is rather large, so that
the plots are smooth. Smaller systems may need to gather data from multiple frames in order to smooth the resulting
array’s statistics, by computing multiple times with reset=False.

[2]: uc = freud.data.UnitCell.fcc()
box, points = uc.generate_system(40, sigma_noise=0.05)

Now we create a BondOrder compute object and create some arrays useful for plotting.
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[3]: n_bins_theta = 100
n_bins_phi = 100
bod = freud.environment.BondOrder((n_bins_theta, n_bins_phi))

phi = np.linspace(0, np.pi, n_bins_phi)
theta = np.linspace(0, 2*np.pi, n_bins_theta)
phi, theta = np.meshgrid(phi, theta)
x = np.sin(phi) * np.cos(theta)
y = np.sin(phi) * np.sin(theta)
z = np.cos(phi)

Computing the Bond Order Diagram

Next, we use the compute method and the bond_order property to return the array.

[4]: bod_array = bod.compute(system=(box, points), neighbors={'num_neighbors': 12}).bond_
→˓order
# Clean up polar bins for plotting
bod_array = np.clip(bod_array, 0, np.percentile(bod_array, 99))
plt.imshow(bod_array.T)
plt.show()

Plotting on a sphere

This code shows the bond order diagram on a sphere as the sphere is rotated. The code takes a few seconds to run, so
be patient.

[5]: fig = plt.figure(figsize=(12, 8))
for plot_num in range(6):

ax = fig.add_subplot(231 + plot_num, projection='3d')
ax.plot_surface(x, y, z, rstride=1, cstride=1, shade=False,

facecolors=matplotlib.cm.viridis(bod_array / np.max(bod_array)))
ax.set_xlim(-1, 1)
ax.set_ylim(-1, 1)
ax.set_zlim(-1, 1)
ax.set_axis_off()

(continues on next page)
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# View angles in degrees
view_angle = 0, plot_num*15
ax.view_init(*view_angle)

plt.show()

Using Custom Neighbors

We can also use a custom neighbor query to determine bonds. For example, we can filter for a range of bond lengths.
Below, we only consider neighbors between 𝑟𝑚𝑖𝑛 = 2.5 and 𝑟𝑚𝑎𝑥 = 3 and plot the resulting bond order diagram.

[6]: bod_array = bod.compute(system=(box, points), neighbors={'r_max': 3.0, 'r_min': 2.5}).
→˓bond_order
# Clean up polar bins for plotting
bod_array = np.clip(bod_array, 0, np.percentile(bod_array, 99))
plt.imshow(bod_array.T)
plt.show()
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freud.environment.EnvironmentCluster

The freud.environment.EnvironmentCluster class finds and clusters local environments, as determined
by the vectors pointing to neighbor particles. Neighbors can be defined by a cutoff distance or a number of nearest-
neighbors, and the resulting freud.locality.NeighborList is used to enumerate a set of vectors, defining
an “environment.” These environments are compared with the environments of neighboring particles to form spatial
clusters, which usually correspond to grains, droplets, or crystalline domains of a system. EnvironmentCluster
has several parameters that alter its behavior, please see the documentation or helper functions below for descriptions
of these parameters.

In this example, we cluster the local environments of hexagons. Clusters with 5 or fewer particles are colored dark
gray.

[1]: import numpy as np
import freud
from collections import Counter
import matplotlib.pyplot as plt

def get_cluster_arr(system, num_neighbors, threshold,
registration=False, global_search=False):

"""Computes clusters of particles' local environments.

Args:
system:

Any object that is a valid argument to
:class:`freud.locality.NeighborQuery.from_system`.

num_neighbors (int):
Number of neighbors to consider in every particle's local environment.

threshold (float):
Maximum magnitude of the vector difference between two vectors,
below which we call them matching.

global_search (bool):
If True, do an exhaustive search wherein the environments of
every single pair of particles in the simulation are compared.
If False, only compare the environments of neighboring particles.

registration (bool):
Controls whether we first use brute force registration to

(continues on next page)
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orient the second set of vectors such that it minimizes the
RMSD between the two sets.

Returns:
tuple(np.ndarray, dict): array of cluster indices for every particle
and a dictionary mapping from cluster_index keys to vector_array)
pairs giving all vectors associated with each environment.

"""
# Perform the env-matching calcuation
neighbors = {'num_neighbors': num_neighbors}
match = freud.environment.EnvironmentCluster()
match.compute(system, threshold, neighbors=neighbors,

registration=registration, global_search=global_search)
return match.cluster_idx, match.cluster_environments

def color_by_clust(cluster_index_arr, no_color_thresh=1,
no_color='#333333', cmap=plt.get_cmap('viridis')):

"""Takes a cluster_index_array for every particle and returns a
dictionary of (cluster index, hexcolor) color pairs.

Args:
cluster_index_arr (numpy.ndarray):

The array of cluster indices, one per particle.
no_color_thresh (int):

Clusters with this number of particles or fewer will be
colored with no_color.

no_color (color):
What we color particles whose cluster size is below no_color_thresh.

cmap (color map):
The color map we use to color all particles whose
cluster size is above no_color_thresh.

"""
# Count to find most common clusters
cluster_counts = Counter(cluster_index_arr)
# Re-label the cluster indices by size
color_count = 0
color_dict = {cluster[0]: counter for cluster, counter in

zip(cluster_counts.most_common(),
range(len(cluster_counts)))}

# Don't show colors for clusters below the threshold
for cluster_id in cluster_counts:

if cluster_counts[cluster_id] <= no_color_thresh:
color_dict[cluster_id] = -1

OP_arr = np.linspace(0.0, 1.0, max(color_dict.values())+1)

# Get hex colors for all clusters of size greater than no_color_thresh
for old_cluster_index, new_cluster_index in color_dict.items():

if new_cluster_index == -1:
color_dict[old_cluster_index] = no_color

else:
color_dict[old_cluster_index] = cmap(OP_arr[new_cluster_index])

return color_dict

We load the simulation data and call the analysis functions defined above. Notice that we use 6 nearest neighbors,
since our system is made of hexagons that tend to cluster with 6 neighbors.
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[2]: ex_data = np.load('data/MatchEnv_Hexagons.npz')
box = ex_data['box']
positions = ex_data['positions']
orientations = ex_data['orientations']
aq = freud.AABBQuery(box, positions)

cluster_index_arr, cluster_envs = get_cluster_arr(
aq, num_neighbors=6, threshold=0.2,
registration=False, global_search=False)

color_dict = color_by_clust(cluster_index_arr, no_color_thresh=5)
colors = [color_dict[i] for i in cluster_index_arr]

Below, we plot the resulting clusters. The colors correspond to the cluster size.

[3]: plt.figure(figsize=(12, 12), facecolor='white')
aq.plot(ax=plt.gca(), c=colors, s=20)
plt.title('Clusters Colored by Particle Local Environment')
plt.show()
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freud.environment.LocalDescriptors: Steinhardt Order Parameters from Scratch

The freud.environment module analyzes the local environments of particles. The freud.environment.
LocalDescriptors class is a useful tool for analyzing identifying crystal structures in a rotationally invariant
manner using local particle environments. The primary purpose of this class is to compute spherical harmonics be-
tween neighboring particles in a way that orients particles correctly relative to their local environment, ensuring that
global orientational shifts do not change the output.

[1]: import freud
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
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Computing Spherical Harmonics

To demonstrate the basic application of the class, let’s compute the spherical harmonics between neighboring particles.
For simplicity, we consider points on a simple cubic lattice.

[2]: uc = freud.data.UnitCell.sc()
box, points = uc.generate_system(5)
system = freud.AABBQuery(box, points)
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
system.plot(ax=ax)
ax.set_title("Simple cubic crystal", fontsize=16)
plt.show()

Now, let’s use the class to compute an array of spherical harmonics for the system. The harmonics are computed
for each bond, where a bond is defined by a pair of particles that are determined to lie within each others’ nearest
neighbor shells based on a standard neighbor list search. The number of bonds and spherical harmonics to calculate is
configurable.

[3]: num_neighbors = 6
l_max = 12

nlist = system.query(points, {'num_neighbors': num_neighbors, 'exclude_ii': True}).
→˓toNeighborList()
ld = freud.environment.LocalDescriptors(l_max, mode='global')
ld.compute(system, neighbors=nlist);
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Accessing the Data

The resulting spherical harmonic array has a shape corresponding to the number of neighbors. We can now extract the
spherical harmonics corresponding to a particular (𝑙,𝑚) pair using the ordering used by the LocalDescriptors
class: increasing values of 𝑙, and for each 𝑙, the nonnegative 𝑚 values followed by the negative values.

[4]: sph_raw = np.mean(ld.sph, axis=0)
count = 0
sph = np.zeros((l_max+1, l_max+1), dtype=np.complex128)
for l in range(l_max+1):

for m in range(l+1):
sph[l, m] = sph_raw[count]
count += 1

for m in range(-l, 0):
sph[l, m] = sph_raw[count]
count += 1

Using Spherical Harmonics to Compute Steinhardt Order Parameters

The raw per bond spherical harmonics are not typically useful quantities on their own. However, they can be used to
perform sophisticated crystal structure analyses with different methods; for example, the pythia library uses machine
learning to find patterns in the spherical harmonics computed by this class. In this notebook, we’ll use the quantities
for a more classical application: the computation of Steinhardt order parameters. The order parameters 𝑞𝑙 provide
a rotationally invariant measure of the system that can for some structures, provide a unique identifying fingerprint.
They are a particularly useful measure for various simple cubic structures such as structures with underlying simple
cubic, BCC, or FCC lattices. The freud library actually provides additional classes to efficiently calculate these
order parameters directly, but they also provide a reasonable demonstration here.

For more information on Steinhardt order parameters, see the original paper or the freud.order.Steinhardt
documentation.

[5]: def get_ql(num_particles, descriptors, nlist, weighted=False):
"""Given a set of points and a LocalDescriptors object (and the
underlying NeighborList), compute the per-particle Steinhardt ql
order parameter for all :math:`l` values up to the maximum quantum
number used in the computation of the descriptors."""
qbar_lm = np.zeros((num_particles, descriptors.sph.shape[1]),

dtype=np.complex128)
for i in range(num_particles):

indices = nlist.query_point_indices == i
Ylms = descriptors.sph[indices, :]
if weighted:

weights = nlist.weights[indices, np.newaxis]
weights /= np.sum(weights)
num_neighbors = 1

else:
weights = np.ones_like(Ylms)
num_neighbors = descriptors.sph.shape[0]/num_particles

qbar_lm[i, :] = np.sum(Ylms * weights, axis=0)/num_neighbors

ql = np.zeros((qbar_lm.shape[0], descriptors.l_max+1))
for i in range(ql.shape[0]):

for l in range(ql.shape[1]):
for k in range(l**2, (l+1)**2):

ql[i, l] += np.absolute(qbar_lm[i, k])**2

(continues on next page)
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ql[i, l] = np.sqrt(4*np.pi/(2*l + 1) * ql[i, l])

return ql

ld_ql = get_ql(len(points), ld, nlist)

Since freud provides the ability to calculate these parameter as well, we can directly check that our answers are
correct. Note: More information on the ``Steinhardt`` class can be found in the documentation or in the ``Steinhardt``
example.

[6]: L = 6
steinhardt = freud.order.Steinhardt(l=L)
steinhardt.compute(system, neighbors=nlist)
if np.allclose(steinhardt.ql, ld_ql[:, L]):

print("Our manual calculation matches the Steinhardt class!")

Our manual calculation matches the Steinhardt class!

For a brief demonstration of why the Steinhardt order parameters can be useful, let’s look at the result of thermalizing
our points and recomputing this measure.

[7]: sigmas = [0.03, 0.05, 0.1]
systems = []
nlists = []
for sigma in sigmas:

box, points = uc.generate_system(5, sigma_noise=sigma)
system = freud.AABBQuery(box, points)
systems.append(system)
nlists.append(

system.query(
points, {'num_neighbors': num_neighbors, 'exclude_ii': True}

).toNeighborList()
)

[8]: fig = plt.figure(figsize=(14, 6))
axes = []
for i, v in enumerate(sigmas):

ax = fig.add_subplot("1{}{}".format(len(sigmas), i+1), projection='3d')
systems[i].plot(ax=ax)
ax.set_title("$\sigma$ = {}".format(v), fontsize=16);

plt.show()
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If we recompute the Steinhardt OP for each of these data sets, we see that adding noise has the effect of smoothing the
order parameter such that the peak we observed for the perfect crystal is no longer observable.

[9]: ld_qls = []
for i, sigma in enumerate(sigmas):

ld = freud.environment.LocalDescriptors(l_max, mode='global')
ld.compute(systems[i], neighbors=nlists[i])
ld_qls.append(get_ql(len(systems[i].points), ld, nlists[i]))

[10]: fig, ax = plt.subplots()
for i, ld_ql in enumerate(ld_qls):

lim_out = ax.hist(ld_ql[:, L], label="$\sigma$ = {}".format(sigmas[i]),
→˓density=True)

if i == 0:
# Can choose any element, all are identical in the reference case
ax.vlines(ld_ql[:, L][0], 0, np.max(lim_out[0]), label='Reference')

ax.set_title("Histogram of $q_{L}$ values".format(L=L), fontsize=16)
ax.set_ylabel("Frequency", fontsize=14)
ax.set_xlabel("$q_{L}$".format(L=L), fontsize=14)
ax.legend(fontsize=14)
plt.show()
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This type of identification process is what the LocalDescriptors data outputs may be used for. In the case of Steinhardt
OPs, it provides a simple fingerprint for comparing thermalized systems to a known ideal structure to measure their
similarity.

For reference, we can also check these values against the Steinhardt class again.

[11]: for i, (system, nlist) in enumerate(zip(systems, nlists)):
steinhardt = freud.order.Steinhardt(l=L)
steinhardt.compute(system, nlist)
if np.allclose(steinhardt.particle_order, ld_qls[i][:, L]):

print("Our manual calculation matches the Steinhardt class!")

Our manual calculation matches the Steinhardt class!
Our manual calculation matches the Steinhardt class!
Our manual calculation matches the Steinhardt class!

freud.interface.Interface

Locating Particles on Interfacial Boundaries

The freud.interface module compares the distances between two sets of points to determine the interfacial
particles.

[1]: import freud
import numpy as np
import matplotlib.pyplot as plt

To make a pretend data set, we create a large number of blue (-1) particles on a square grid. Then we place grain
centers on a larger grid and draw grain radii from a normal distribution. We color the particles yellow (+1) if their
distance from a grain center is less than the grain radius.

[2]: np.random.seed(0)
system_size = 100
num_grains = 4
uc = freud.data.UnitCell.square()

(continues on next page)
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box, points = uc.generate_system(num_replicas=system_size, scale=1)
_, centroids = uc.generate_system(num_replicas=num_grains, scale=system_size/num_
→˓grains)
system = freud.AABBQuery(box, points)
values = np.array([-1 for p in points])
grain_radii = np.abs(np.random.normal(size=num_grains**2, loc=5, scale=2))
for center, radius in zip(centroids, grain_radii):

for i, j, dist in system.query(center, {'r_max': radius}):
values[j] = 1

plt.figure(figsize=(9, 9))
system.plot(ax=plt.gca(), c=values, cmap='cividis', s=12)
plt.title('System of two particle types')
plt.show()

This system is phase-separated because the yellow particles are generally near one another, and so are the blue
particles.

We can use freud.interface.InterfaceMeasure to label the particles on either side of the yellow-blue
boundary. The class can tell us how many points are on either side of the interface:
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[3]: iface = freud.interface.Interface()
iface.compute((box, points[values > 0]), points[values < 0], neighbors={'r_max': 1.5})

print('There are {} query points (blue) on the interface.'.format(iface.query_point_
→˓count))
print('There are {} points (yellow) on the interface.'.format(iface.point_count))

There are 856 query points (blue) on the interface.
There are 724 points (yellow) on the interface.

Now we can plot the particles on the interface. We color the outside of the interface dark blue and the inside of the
interface yellow.

[4]: plt.figure(figsize=(9, 9))

interface_values = np.zeros(len(points))
interface_values[np.where(values < 0)[0][iface.query_point_ids]] = -1
interface_values[np.where(values > 0)[0][iface.point_ids]] = 1

system.plot(ax=plt.gca(), c=interface_values, cmap='cividis', s=12)
plt.title('Particles on the interface between types')
plt.show()
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freud.order.Hexatic: Hard Hexagons

Hexatic Order Parameter

The hexatic order parameter measures how closely the local environment around a particle resembles perfect 𝑘-atic
symmetry, e.g. how closely the environment resembles hexagonal/hexatic symmetry for 𝑘 = 6. The order parameter
is given by:

𝜓𝑘 (𝑖) =
1

𝑛

𝑛∑︁
𝑗

𝑒𝑘𝑖𝜃𝑖𝑗

where 𝜃𝑖𝑗 is the angle between the vector �⃗�𝑖𝑗 and (1, 0).

The pseudocode is given below:

for each particle i:
neighbors = nearestNeighbors(i, n):

(continues on next page)
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for each particle j in neighbors:
r_ij = position[j] - position[i]
theta_ij = arctan2(r_ij.y, r_ij.x)
psi_array[i] += exp(complex(0,k*theta_ij))

The data sets used in this example are a system of hard hexagons, simulated in the NVT thermodynamic ensemble
in HOOMD-blue, for a dense fluid of hexagons at packing fraction 𝜑 = 0.65 and solids at packing fractions 𝜑 =
0.75, 0.85.

[1]: import numpy as np
import freud
from bokeh.io import output_notebook
from bokeh.plotting import figure, show
# The following line imports this set of utility functions:
# https://github.com/glotzerlab/freud-examples/blob/master/util.py
import util
output_notebook()

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

[2]: def plot_hex_order_param(data_path, title):
# Create hexatic object
hex_order = freud.order.Hexatic(k=6)

# Load the data
box_data = np.load("{}/box_data.npy".format(data_path))
pos_data = np.load("{}/pos_data.npy".format(data_path))
quat_data = np.load("{}/quat_data.npy".format(data_path))

# Grab data from last frame
box = box_data[-1].tolist()
points = pos_data[-1]
quats = quat_data[-1]
angles = 2*np.arctan2(quats[:, 3], quats[:, 0])

# Compute hexatic order for 6 nearest neighbors
hex_order.compute(system=(box, points), neighbors={'num_neighbors': 6})
psi_k = hex_order.particle_order
avg_psi_k = np.mean(psi_k)

# Create hexagon vertices
verts = util.make_polygon(sides=6, radius=0.6204)
# Create array of transformed positions
patches = util.local_to_global(verts, points[:, :2], angles)
# Create an array of angles relative to the average
relative_angles = np.angle(psi_k) - np.angle(avg_psi_k)
# Plot in bokeh
p = figure(title=title)
p.patches(xs=patches[:, :, 0].tolist(), ys=patches[:, :, 1].tolist(),

fill_color=[util.cubeellipse(x) for x in relative_angles],
line_color="black")

util.default_bokeh(p)
show(p)
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[3]: plot_hex_order_param('data/phi065', 'Hexatic Order Parameter, 0.65 density')

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

As the density increases to 𝜑 = 0.75, the shapes are forced to align more closely so that they may tile space effectively.

[4]: plot_hex_order_param('data/phi075', 'Hexatic Order Parameter, 0.75 density')

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

As the density increases to 𝜑 = 0.85, the alignment becomes even stronger and defects are no longer visible.

[5]: plot_hex_order_param('data/phi085', 'Hexatic Order Parameter, 0.85 density')

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_exec.v0+json

freud.order.Hexatic: 2D Minkowski Structure Metrics

This demonstrates a variant of the hexatic order parameter 𝜓𝑘 that weighs each neighbor bond according to its cor-
responding side length in a Voronoi diagram of the system. This variant, called a Minkowski Structure Metric, is in-
variant under rotation, translation, and scaling. We denote the 2D Minkowski Structure Metric (the Voronoi-weighted
form of the hexatic order parameter) as 𝜓′

𝑘.

See also: - https://morphometry.org/theory/anisotropy-analysis-by-imt/ - https://aip.scitation.org/doi/10.1063/1.
4774084

[1]: import numpy as np
import freud
from mpl_toolkits.axes_grid1.axes_divider import make_axes_locatable
from matplotlib.colorbar import Colorbar

[2]: def show_minkowski_structure_metrics(system):
voro = freud.locality.Voronoi()
voro.compute(system)
voro.plot()
for k in [0, 1, 2, 3, 4, 5, 6, 7, 8]:

psi = freud.order.Hexatic(k=k, weighted=True)
psi.compute(system, neighbors=voro.nlist)
order = np.absolute(psi.particle_order)

ax = voro.plot()
patches = ax.collections[0]
patches.set_array(order)
patches.set_cmap('viridis')
patches.set_clim(0, 1)
patches.set_alpha(0.7)
# Remove old colorbar coloring by number of sides
ax.figure.delaxes(ax.figure.axes[-1])

(continues on next page)
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ax_divider = make_axes_locatable(ax)
# Add a new colorbar to the right of the main axes.
cax = ax_divider.append_axes("right", size="7%", pad="2%")
cbar = Colorbar(cax, patches)
cbar.set_label("$\psi'_{k}$".format(k=k), size=20)
ax

[3]: unit_cell = freud.data.UnitCell.hex()
system = unit_cell.generate_system(num_replicas=[12, 8, 1], sigma_noise=0.15)
show_minkowski_structure_metrics(system)
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[4]: unit_cell = freud.data.UnitCell.square()
system = unit_cell.generate_system(num_replicas=10, sigma_noise=0.15)
show_minkowski_structure_metrics(system)
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freud.order.Nematic

Nematic Order Parameter

The freud.order module provids the tools to calculate various order parameters that can be used to identify phase
transitions. This notebook demonstrates the nematic order parameter, which can be used to identify systems with
strong orientational ordering but no translational ordering. For this example, we’ll start with a set of random positions
in a 3D system, each with a fixed, assigned orientation. Then, we will show how deviations from these orientations
are exhibited in the order parameter.

[1]: import freud
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import rowan # for quaternion math, see rowan.readthedocs.io for more information.

In order to work with orientations in freud, we need to do some math with quaternions. If you are unfamiliar with
quaternions, you can read more about their definition and how they can be used to represent rotations. For the purpose
of this tutorial, just consider them as 4D vectors, and know that the set of normalized (i.e. unit norm) 4D vectors can
be used to represent rotations in 3D. In fact, there is a 1-1 mapping between normalize quaternions and 3x3 rotation
matrices. Quaternions are more computationally convenient, however, because they only require storing 4 numbers
rather than 9, and they can be much more easily chained together. For our purposes, you can largely ignore the
contents of the next cell, other than to note that this is how we perform rotations of vectors using quaternions instead
of matrices.

[2]: # Random positions are fine for this. Order is measured
# in terms of similarity of orientations, not positions.
L = 10
N = 100
box, points = freud.data.make_random_system(L, N, seed=0)
orientations = np.array([[1, 0, 0, 0]] * N)

[3]: # To show orientations, we use arrows rotated by the quaternions.
arrowheads = rowan.rotate(orientations, [1, 0, 0])

(continues on next page)
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fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.quiver3D(points[:, 0], points[:, 1], points[:, 2],

arrowheads[:, 0], arrowheads[:, 1], arrowheads[:, 2])
ax.set_title("Orientations", fontsize=16);

The nematic order parameter provides a measure of how much of the system is aligned with respect to some provided
reference vector. As a result, we can now compute the order parameter for a few simple cases. Since our original
system is oriented along the x-axis, we can immediately test for that, as well as orientation along any of the other
coordinate axes.

[4]: nop = freud.order.Nematic([1, 0, 0])
nop.compute(orientations)
print("The value of the order parameter is {}.".format(nop.order))

The value of the order parameter is 1.0.

In general, the nematic order parameter is defined as the eigenvalue corresponding to the largest eigenvector of the
nematic tensor, which is also computed by this class and provides an average over the orientations of all particles in
the system. As a result, we can also look at the intermediate results of our calculation and see how they are related. To
do so, let’s consider a more interesting system with random orientations.

[5]: # We rotate identity quaternions slightly, in a random direction
np.random.seed(0)
interpolate_amount = 0.3
identity_quats = np.array([[1, 0, 0, 0]] * N)
orientations = rowan.interpolate.slerp(

identity_quats, rowan.random.rand(N), interpolate_amount)

[6]: # To show orientations, we use arrows rotated by the quaternions.
arrowheads = rowan.rotate(orientations, [1, 0, 0])

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.quiver3D(points[:, 0], points[:, 1], points[:, 2],

arrowheads[:, 0], arrowheads[:, 1], arrowheads[:, 2])
ax.set_title("Orientations", fontsize=16);
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First, we see that for this nontrivial system the order parameter now depends on the choice of director.

[7]: axes = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1], [1, 1, 1]]
for ax in axes:

nop = freud.order.Nematic(ax)
nop.compute(orientations)
print("For axis {}, the value of the order parameter is {:0.3f}.".format(ax, nop.

→˓order))

For axis [1, 0, 0], the value of the order parameter is 0.600.
For axis [0, 1, 0], the value of the order parameter is 0.586.
For axis [0, 0, 1], the value of the order parameter is 0.587.
For axis [1, 1, 0], the value of the order parameter is 0.591.
For axis [1, 0, 1], the value of the order parameter is 0.589.
For axis [0, 1, 1], the value of the order parameter is 0.573.
For axis [1, 1, 1], the value of the order parameter is 0.578.

Furthermore, increasing the amount of variance in the orientations depresses the value of the order parameter even
further.

[8]: interpolate_amount = 0.4
orientations = rowan.interpolate.slerp(

identity_quats, rowan.random.rand(N), interpolate_amount)

arrowheads = rowan.rotate(orientations, [1, 0, 0])
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.quiver3D(points[:, 0], points[:, 1], points[:, 2],

arrowheads[:, 0], arrowheads[:, 1], arrowheads[:, 2])
ax.set_title("Orientations", fontsize=16);

axes = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 0], [1, 0, 1], [0, 1, 1], [1, 1, 1]]
for ax in axes:

nop = freud.order.Nematic(ax)
nop.compute(orientations)
print("For axis {}, the value of the order parameter is {:0.3f}.".format(ax, nop.

→˓order))

For axis [1, 0, 0], the value of the order parameter is 0.451.
For axis [0, 1, 0], the value of the order parameter is 0.351.

(continues on next page)
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For axis [0, 0, 1], the value of the order parameter is 0.342.
For axis [1, 1, 0], the value of the order parameter is 0.374.
For axis [1, 0, 1], the value of the order parameter is 0.391.
For axis [0, 1, 1], the value of the order parameter is 0.316.
For axis [1, 1, 1], the value of the order parameter is 0.344.

Finally, we can look at the per-particle quantities and build them up to get the actual value of the order parameter.

[9]: # The per-particle values averaged give the nematic tensor
print(np.allclose(np.mean(nop.particle_tensor, axis=0), nop.nematic_tensor))
print("The nematic tensor:")
print(nop.nematic_tensor)

eig = np.linalg.eig(nop.nematic_tensor)
print("The eigenvalues of the nematic tensor:")
print(eig[0])
print("The eigenvectors of the nematic tensor:")
print(eig[1])

# The largest eigenvalue
print("The largest eigenvalue, {:0.3f}, is equal to the order parameter {:0.3f}.".
→˓format(

np.max(eig[0]), nop.order))

True
The nematic tensor:
[[ 0.0115407 0.21569438 0.14729623]
[ 0.21569438 0.02040018 0.14309749]
[ 0.14729623 0.14309748 -0.03194092]]

The eigenvalues of the nematic tensor:
[ 0.34387365 -0.20013455 -0.14373913]
The eigenvectors of the nematic tensor:
[[ 0.6173224 0.73592573 -0.27807635]
[ 0.6237324 -0.6732561 -0.3970945 ]
[ 0.47944868 -0.07169023 0.87463677]]

The largest eigenvalue, 0.344, is equal to the order parameter 0.344.
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freud.order.Steinhardt

Steinhardt Order Parameters

The freud.order module provids the tools to calculate various order parameters that can be used to identify
phase transitions. In the context of crystalline systems, some of the best known order parameters are the Steinhardt
order parameters 𝑞𝑙 and 𝑤𝑙. These order parameters are mathematically defined according to certain rotationally
invariant combinations of spherical harmonics calculated between particles and their nearest neighbors, so they provide
information about local particle environments. As a result, considering distributions of these order parameters across
a system can help characterize the overall system’s ordering. The primary utility of these order parameters arises from
the fact that they often exhibit certain characteristic values for specific crystal structures.

In this notebook, we will use the order parameters to identify certain basic structures: BCC, FCC, and simple cubic.
FCC, BCC, and simple cubic structures each exhibit characteristic values of 𝑞𝑙 for some 𝑙 value, meaning that in a
perfect crystal all the particles in one of these structures will have the same value of 𝑞𝑙. As a result, we can use these
characteristic 𝑞𝑙 values to determine whether a disordered fluid is beginning to crystallize into one structure or another.
The 𝑙 values correspond to the 𝑙 quantum number used in defining the underlying spherical harmonics; for example,
the 𝑞4 order parameter would provide a measure of 4-fold ordering.

[1]: import freud
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# Try to plot using KDE if available, otherwise revert to histogram
try:

from sklearn.neighbors.kde import KernelDensity
kde = True

except:
kde = False

np.random.seed(1)

We first construct ideal crystals and then extract the characteristic value of 𝑞𝑙 for each of these structures. In this case,
we know that simple cubic has a coordination number of 6, BCC has 8, and FCC has 12, so we are looking for the
values of 𝑞6, 𝑞8, and 𝑞12, respectively. Therefore, we can also enforce that we require 6, 8, and 12 nearest neighbors
to be included in the calculation, respectively.

[2]: L = 6
sc = freud.data.UnitCell.sc()
sc_system = sc.generate_system(5)
ql = freud.order.Steinhardt(L)
ql_sc = ql.compute(sc_system, neighbors={'num_neighbors': L}).particle_order
mean_sc = np.mean(ql_sc)
print("The Q{} values computed for simple cubic are {:.3f} +/- {:.3e}".format(

L, mean_sc, np.std(ql_sc)))

L = 8
bcc = freud.data.UnitCell.bcc()
bcc_system = bcc.generate_system(5, sigma_noise=0)
ql = freud.order.Steinhardt(L)
ql.compute(bcc_system, neighbors={'num_neighbors': L})
ql_bcc = ql.particle_order
mean_bcc = np.mean(ql_bcc)
print("The Q{} values computed for bcc are {:.3f} +/- {:.3e}".format(

L, mean_bcc, np.std(ql_bcc)))

(continues on next page)
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L = 12
fcc = freud.data.UnitCell.fcc()
fcc_system = fcc.generate_system(5)
ql = freud.order.Steinhardt(L)
ql_fcc = ql.compute(fcc_system, neighbors={'num_neighbors': L}).particle_order
mean_fcc = np.mean(ql_fcc)
print("The Q{} values computed for fcc are {:.3f} +/- {:.3e}".format(

L, mean_fcc, np.std(ql_fcc)))

The Q6 values computed for simple cubic are 0.354 +/- 3.938e-08
The Q8 values computed for bcc are 0.213 +/- 1.137e-12
The Q12 values computed for fcc are 0.600 +/- 1.155e-12

Given that the per-particle order parameter values are essentially identical to within machine precision, we can be
confident that we have found the characteristic value of 𝑞𝑙 for each of these systems. We can now compare these
values to the values of 𝑞𝑙 in thermalized systems to determine the extent to which they are exhibiting the ordering
expected of one of these perfect crystals.

[3]: def make_noisy_replicas(unitcell, sigmas):
"""Given a unit cell, return a noisy system."""
systems = []
for sigma in sigmas:

systems.append(unitcell.generate_system(5, sigma_noise=sigma))
return systems

[4]: sigmas = [0.01, 0.02, 0.03, 0.05]
sc_systems = make_noisy_replicas(sc, sigmas)
bcc_systems = make_noisy_replicas(bcc, sigmas)
fcc_systems = make_noisy_replicas(fcc, sigmas)

[5]: fig, axes = plt.subplots(1, 3, figsize=(16, 5))

# Zip up the data that will be needed for each structure type.
zip_obj = zip([sc_systems, bcc_systems, fcc_systems], [mean_sc, mean_bcc, mean_fcc],

[6, 8, 12], ["Simple Cubic", "BCC", "FCC"])

for i, (systems, ref_val, L, title) in enumerate(zip_obj):
ax = axes[i]
for j, (system, sigma) in enumerate(zip(systems, sigmas)):

ql = freud.order.Steinhardt(L)
ql.compute(system, neighbors={'num_neighbors': L})
if not kde:

ax.hist(ql.particle_order, label="$\sigma$ = {}".format(sigma),
→˓density=True)

else:
padding = 0.02
N = 50
bins = np.linspace(np.min(ql.particle_order)-padding,

np.max(ql.particle_order)+padding, N)

kde = KernelDensity(bandwidth=0.004)
kde.fit(ql.particle_order[:, np.newaxis])
ql = np.exp(kde.score_samples(bins[:, np.newaxis]))

ax.plot(bins, ql, label="$\sigma$ = {}".format(sigma))
ax.set_title(title, fontsize=20)

(continues on next page)
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ax.tick_params(axis='both', which='both', labelsize=14)
if j == 0:

# Can choose any element, all are identical in the reference case
ax.vlines(ref_val, 0, np.max(ax.get_ylim()[1]), label='Reference')

fig.legend(*ax.get_legend_handles_labels(), fontsize=18) # Only have one legend
fig.subplots_adjust(right=0.78)

From this figure, we can see that for each type of structure, increasing the amount of noise makes the distribution of
the order parameter values less peaked at the expected reference value. As a result, we can use this method to identify
specific structures. Choosing the appropriate parameterization for the order parameter (which quantum number 𝑙 to
use, how to choose neighbors, etc.) can be very important.

In addition to the 𝑞𝑙 parameters demonstrated here, this class can also compute the third-order invariant 𝑤𝑙. The 𝑤𝑙

may be better at identifying some structures, so some experimentation and reference to the appropriate literature can
be useful (as a starting point, see Steinhardt, Nelson, and Ronchetti (1983)).

By setting average=True in the constructor, the Steinhardt class will perform an additional level of averaging
over the second neighbor shells of particles, to accumulate more information on particle environments (see Lechner
and Dellago (2008)). To get a sense for the best method for analyzing a specific system, the best course of action is
try out different parameters or to consult the literature to see how these have been used in the past.

freud.pmft.PMFTXY

The PMFT returns the potential energy associated with finding a particle pair in a given spatial (positional and ori-
entational) configuration. The PMFT is computed in the same manner as the RDF. The basic algorithm is described
below:

for each particle i:
for each particle j:

v_ij = position[j] - position[i]
bin_x, bin_y = convert_to_bin(v_ij)
pcf_array[bin_y][bin_x]++

freud uses spatial data structures and parallelism to optimize this algorithm.

The data sets used in this example are a system of hard hexagons, simulated in the NVT thermodynamic ensemble
in HOOMD-blue, for a dense fluid of hexagons at packing fraction 𝜑 = 0.65 and solids at packing fractions 𝜑 =
0.75, 0.85.

[1]: import freud
freud.set_num_threads(1)

(continues on next page)
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import numpy as np
import matplotlib
import matplotlib.pyplot as plt
# The following line imports this set of utility functions:
# https://github.com/glotzerlab/freud-examples/blob/master/util.py
import util
from scipy.ndimage.filters import gaussian_filter

%matplotlib inline
matplotlib.rcParams.update({'font.size': 20,

'axes.titlesize': 20,
'axes.labelsize': 20,
'xtick.labelsize': 16,
'ytick.labelsize': 16,
'savefig.pad_inches': 0.025,
'lines.linewidth': 2})

[2]: def plot_pmft(data_path, phi):
# Create the pmft object
pmft = freud.pmft.PMFTXY(x_max=3.0, y_max=3.0, bins=300)

# Load the data
box_data = np.load("{}/box_data.npy".format(data_path))
pos_data = np.load("{}/pos_data.npy".format(data_path))
quat_data = np.load("{}/quat_data.npy".format(data_path))
n_frames = pos_data.shape[0]

for i in range(1, n_frames):
# Read box, position data
box = box_data[i].tolist()
points = pos_data[i]
quats = quat_data[i]
angles = 2*np.arctan2(quats[:, 3], quats[:, 0]) % (2 * np.pi)
pmft.compute(system=(box, points), query_orientations=angles, reset=False)

# Get the value of the PMFT histogram bins
pmft_arr = pmft.pmft.T

# Do some simple post-processing for plotting purposes
pmft_arr[np.isinf(pmft_arr)] = np.nan
dx = (2.0 * 3.0) / pmft.nbins[0]
dy = (2.0 * 3.0) / pmft.nbins[1]
nan_arr = np.where(np.isnan(pmft_arr))
for i in range(pmft.nbins[0]):

x = -3.0 + dx * i
for j in range(pmft.nbins[1]):

y = -3.0 + dy * j
if ((x*x + y*y < 1.5) and (np.isnan(pmft_arr[j, i]))):

pmft_arr[j, i] = 10.0
w = int(2.0 * pmft.nbins[0] / (2.0 * 3.0))
center = int(pmft.nbins[0] / 2)

# Get the center of the histogram bins
pmft_smooth = gaussian_filter(pmft_arr, 1)
pmft_image = np.copy(pmft_smooth)
pmft_image[nan_arr] = np.nan

(continues on next page)
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pmft_smooth = pmft_smooth[center-w:center+w, center-w:center+w]
pmft_image = pmft_image[center-w:center+w, center-w:center+w]
x, y = pmft.bin_centers
reduced_x = x[center-w:center+w]
reduced_y = y[center-w:center+w]

# Plot figures
f = plt.figure(figsize=(12, 5), facecolor='white')
values = [-2, -1, 0, 2]
norm = matplotlib.colors.Normalize(vmin=-2.5, vmax=3.0)
n_values = [norm(i) for i in values]
colors = matplotlib.cm.viridis(n_values)
colors = colors[:, :3]
verts = util.make_polygon(sides=6, radius=0.6204)
lims = (-2, 2)
ax0 = f.add_subplot(1, 2, 1)
ax1 = f.add_subplot(1, 2, 2)
for ax in (ax0, ax1):

ax.contour(reduced_x, reduced_y, pmft_smooth,
[9, 10], colors='black')

ax.contourf(reduced_x, reduced_y, pmft_smooth,
[9, 10], hatches='X', colors='none')

ax.plot(verts[:, 0], verts[:, 1], color='black', marker=',')
ax.fill(verts[:, 0], verts[:, 1], color='black')
ax.set_aspect('equal')
ax.set_xlim(lims)
ax.set_ylim(lims)
ax.xaxis.set_ticks([i for i in range(lims[0], lims[1]+1)])
ax.yaxis.set_ticks([i for i in range(lims[0], lims[1]+1)])
ax.set_xlabel(r'$x$')
ax.set_ylabel(r'$y$')

ax0.set_title('PMFT Heat Map, $\phi = {}$'.format(phi))
im = ax0.imshow(np.flipud(pmft_image),

extent=[lims[0], lims[1], lims[0], lims[1]],
interpolation='nearest', cmap='viridis',
vmin=-2.5, vmax=3.0)

ax1.set_title('PMFT Contour Plot, $\phi = {}$'.format(phi))
ax1.contour(reduced_x, reduced_y, pmft_smooth,

[-2, -1, 0, 2], colors=colors)

f.subplots_adjust(right=0.85)
cbar_ax = f.add_axes([0.88, 0.1, 0.02, 0.8])
f.colorbar(im, cax=cbar_ax)
plt.show()
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65% density

The plot below shows the PMFT of hexagons at 65% density. The hexagons tend to be close to one another, in the
darker regions (the lower values of the potential of mean force and torque).

The hatched region near the black hexagon in the center is a region where no data were collected: the hexagons are
hard shapes and cannot overlap, so there is an excluded region of space close to the hexagon.

The ring around the hexagon where the PMFT rises and then falls corresponds to the minimum of the radial distribution
function – particles tend to not occupy that region, preferring instead to be at close range (in the first neighbor shell)
or further away (in the second neighbor shell).

[3]: plot_pmft('data/phi065', 0.65)

75% density

As the system density is increased to 75%, the propensity for hexagons to occupy the six sites on the faces of their
neighbors increases, as seen by the deeper (darker) wells of the PMFT. Conversely, the shapes strongly dislike occu-
pying the yellow regions, and no particle pairs occupied the white region (so there is no data).

[4]: plot_pmft('data/phi075', 0.75)
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85% density

Finally, at 85% density, there is a large region where no neighbors can be found, and hexagons strictly occupy sites
near those of the perfect hexagonal lattice, at the first- and second-neighbor shells. The wells are deeper and much
more spatially confined that those of the systems at lower densities.

[5]: plot_pmft('data/phi085', 0.85)

102 Chapter 7. Table of Contents



freud Documentation, Release 2.4.0

freud.pmft.PMFTXYZ: Shifting Example

This notebook shows how to use the shifting option on PMFTXYZ to get high resolution views of PMFT features that
are not centered.

[1]: import numpy as np
import freud
import matplotlib.pyplot as plt

First we load in our data. The particles used here are implemented with a simple Weeks-Chandler-Andersen isotropic
pair potential, so particle orientation is not meaningful.

[2]: pos_data = np.load('data/XYZ/positions.npy')
box_data = np.load('data/XYZ/boxes.npy')

We calculate the PMFT the same way as shown in other examples first

[3]: window = 2**(1/6) # The size of the pmft calculation

bins = 100
pmft = freud.pmft.PMFTXYZ(x_max=window, y_max=window, z_max=window, bins=bins)

# This data is for isotropic particles, so we will just make some unit quaternions
# to use as the orientations
quats = np.zeros((pos_data.shape[1],4)).astype(np.float32)
quats[:,0] = 1

for i in range(10, pos_data.shape[0]):
box = box_data[i]
points = pos_data[i]
pmft.compute((box, points), quats, reset=False)

unshifted = pmft.pmft

x, y, z = pmft.bin_centers

When we plot a centered slice of the XYZ pmft, we see that a number of wells are present at some distance from the
origin

[4]: %matplotlib inline

plt.figure(figsize=(10,10))
plt.imshow(unshifted[int(bins/2),:,:])
plt.colorbar()
plt.show()
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If we want a closer look at the details of those wells, then we could increase the PMFT resolution. But this will
increase the computational cost by a lot, and we are wasting a big percentage of the pixels.

This use case is why the shiftvec argument was implemented. Now we will do the same calculation, but we will use a
much smaller window centered on on of the wells.

To do this we need to pass a vector into the PMFTXYZ construction. The window will be centered on this vector.

[5]: shiftvec = [0.82, 0.82, 0]

window = 2**(1/6)/6 # Smaller window for the shifted case

bins = 50

pmft = freud.pmft.PMFTXYZ(x_max=window, y_max=window, z_max=window,
bins=50, shiftvec=shiftvec)

# This data is for isotropic particles, so we will just make some unit quaternions
# to use as the orientations

(continues on next page)
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orientations = np.array([[1, 0, 0, 0]] * pos_data.shape[1])

for i in range(10, pos_data.shape[0]):
box = box_data[i]
points = pos_data[i]
pmft.compute(system=(box, points), query_orientations=orientations, reset=False)

shifted = pmft.pmft

x, y, z = pmft.bin_centers

Now the PMFT is a high resolution close up of one of the bonding wells. Note that as you increase the sampling
resolution, you need to increase your number of samples because there is less averaging in each bin

[6]: %matplotlib inline
plt.figure(figsize=(10, 10))
plt.imshow(shifted[int(bins/2), :, :])
plt.colorbar()
plt.show()
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7.5.3 Example Analyses

The examples below go into greater detail about specific applications of freud and use cases that its analysis methods
enable, such as user-defined analyses, machine learning, and data visualization.

Implementing Common Neighbor Analysis as a custom method

Researchers commonly wish to implement their own custom analysis methods for particle simulations. Here, we show
an example of how to write Common Neighbor Analysis (Honeycutt and Andersen, J. Phys. Chem. 91, 4950) as a
custom method using freud and the NetworkX package.

NetworkX can be installed with pip install networkx.

First, we generate random points and determine which points share neighbors.
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[1]: import freud
import numpy as np
from collections import defaultdict

[2]: # Use a face-centered cubic (fcc) system
box, points = freud.data.UnitCell.fcc().generate_system(4)
aq = freud.AABBQuery(box, points)
nl = aq.query(points, {'num_neighbors': 12, 'exclude_ii': True}).toNeighborList()

[3]: # Get all sets of common neighbors.
common_neighbors = defaultdict(list)
for i, p in enumerate(points):

for j in nl.point_indices[nl.query_point_indices == i]:
for k in nl.point_indices[nl.query_point_indices == j]:

if i != k:
common_neighbors[(i, k)].append(j)

Next, we use NetworkX to build graphs of common neighbors and compute the Common Neighbor Analysis signa-
tures.

[4]: import networkx as nx
from collections import Counter

diagrams = defaultdict(list)
particle_counts = defaultdict(Counter)

for (a, b), neighbors in common_neighbors.items():
# Build up the graph of connections between the
# common neighbors of a and b.
g = nx.Graph()
for i in neighbors:

for j in set(nl.point_indices[
nl.query_point_indices == i]).intersection(neighbors):
g.add_edge(i, j)

# Define the identifiers for a CNA diagram:
# The first integer is 1 if the particles are bonded, otherwise 2
# The second integer is the number of shared neighbors
# The third integer is the number of bonds among shared neighbors
# The fourth integer is an index, just to ensure uniqueness of diagrams
diagram_type = 2-int(b in nl.point_indices[nl.query_point_indices == a])
key = (diagram_type, len(neighbors), g.number_of_edges())
# If we've seen any neighborhood graphs with this signature,
# we explicitly check if the two graphs are identical to
# determine whether to save this one. Otherwise, we add
# the new graph immediately.
if key in diagrams:

isomorphs = [nx.is_isomorphic(g, h) for h in diagrams[key]]
if any(isomorphs):

idx = isomorphs.index(True)
else:

diagrams[key].append(g)
idx = diagrams[key].index(g)

else:
diagrams[key].append(g)
idx = diagrams[key].index(g)

(continues on next page)
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cna_signature = key + (idx,)
particle_counts[a].update([cna_signature])

Looking at the counts of common neighbor signatures, we see that the first particle of the fcc structure has 12 bonds
with signature (1, 4, 2, 0) as we expect.

[5]: particle_counts[0]

[5]: Counter({(1, 4, 2, 0): 12,
(2, 4, 4, 0): 6,
(2, 1, 0, 0): 12,
(2, 2, 1, 0): 24})

Analyzing simulation data from HOOMD-blue at runtime

The following script shows how to use freud to compute the radial distribution function 𝑔(𝑟) on data generated by
the molecular dynamics simulation engine HOOMD-blue during a simulation run.

Generally, most users will want to run analyses as post-processing steps, on the saved frames of a particle
trajectory file. However, it is possible to use analysis callbacks in HOOMD-blue to compute and log quantities at
runtime, too. By using analysis methods at runtime, it is possible to stop a simulation early or change the simulation
parameters dynamically according to the analysis results.

HOOMD-blue can be installed with conda install -c conda-forge hoomd.

The simulation script runs a Monte Carlo simulation of spheres, with outputs parsed with numpy.genfromtxt.

[1]: %matplotlib inline
import hoomd
from hoomd import hpmc
import freud
import numpy as np
import matplotlib.pyplot as plt

[2]: hoomd.context.initialize('')
system = hoomd.init.create_lattice(

hoomd.lattice.sc(a=1), n=10)
mc = hpmc.integrate.sphere(seed=42, d=0.1, a=0.1)
mc.shape_param.set('A', diameter=0.5)

rdf = freud.density.RDF(bins=50, r_max=4)
w6 = freud.order.Steinhardt(l=6, wl=True)

def calc_rdf(timestep):
hoomd.util.quiet_status()
snap = system.take_snapshot()
hoomd.util.unquiet_status()
rdf.compute(system=snap, reset=False)

def calc_W6(timestep):
hoomd.util.quiet_status()
snap = system.take_snapshot()
hoomd.util.unquiet_status()
w6.compute(system=snap, neighbors={'num_neighbors': 12})
return np.mean(w6.particle_order)

(continues on next page)
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# Equilibrate the system a bit before accumulating the RDF.
hoomd.run(1e4)
hoomd.analyze.callback(calc_rdf, period=100)

logger = hoomd.analyze.log(filename='output.log',
quantities=['w6'],
period=100,
header_prefix='#',
overwrite=True)

logger.register_callback('w6', calc_W6)

hoomd.run(1e4)

# Store the computed RDF in a file
np.savetxt('rdf.csv', np.vstack((rdf.bin_centers, rdf.rdf)).T,

delimiter=',', header='r, g(r)')

HOOMD-blue v2.7.0-77-g568406147 DOUBLE HPMC_MIXED MPI TBB SSE SSE2 SSE3 SSE4_1 SSE4_2
→˓AVX AVX2
Compiled: 10/28/2019
Copyright (c) 2009-2019 The Regents of the University of Michigan.
-----
You are using HOOMD-blue. Please cite the following:

* J A Anderson, C D Lorenz, and A Travesset. "General purpose molecular dynamics
simulations fully implemented on graphics processing units", Journal of
Computational Physics 227 (2008) 5342--5359

* J Glaser, T D Nguyen, J A Anderson, P Liu, F Spiga, J A Millan, D C Morse, and
S C Glotzer. "Strong scaling of general-purpose molecular dynamics simulations
on GPUs", Computer Physics Communications 192 (2015) 97--107

-----
-----
You are using HPMC. Please cite the following:

* J A Anderson, M E Irrgang, and S C Glotzer. "Scalable Metropolis Monte Carlo
for simulation of hard shapes", Computer Physics Communications 204 (2016) 21
--30

-----
HOOMD-blue is running on the CPU
notice(2): Group "all" created containing 1000 particles

** starting run **
Time 00:00:10 | Step 3878 / 10000 | TPS 387.761 | ETA 00:00:15
Time 00:00:20 | Step 7808 / 10000 | TPS 392.99 | ETA 00:00:05
Time 00:00:25 | Step 10000 / 10000 | TPS 398.521 | ETA 00:00:00
Average TPS: 392.122
---------
notice(2): -- HPMC stats:
notice(2): Average translate acceptance: 0.933106
notice(2): Trial moves per second: 1.56844e+06
notice(2): Overlap checks per second: 4.07539e+07
notice(2): Overlap checks per trial move: 25.9838
notice(2): Number of overlap errors: 0

** run complete **
** starting run **
Time 00:00:35 | Step 13501 / 20000 | TPS 349.776 | ETA 00:00:18
Time 00:00:45 | Step 17001 / 20000 | TPS 349.699 | ETA 00:00:08
Time 00:00:54 | Step 20000 / 20000 | TPS 352.224 | ETA 00:00:00
Average TPS: 350.471

(continues on next page)
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---------
notice(2): -- HPMC stats:
notice(2): Average translate acceptance: 0.932846
notice(2): Trial moves per second: 1.40185e+06
notice(2): Overlap checks per second: 3.63552e+07
notice(2): Overlap checks per trial move: 25.9338
notice(2): Number of overlap errors: 0

** run complete **

[3]: rdf_data = np.genfromtxt('rdf.csv', delimiter=',')
plt.plot(rdf_data[:, 0], rdf_data[:, 1])
plt.title('Radial Distribution Function')
plt.xlabel('$r$')
plt.ylabel('$g(r)$')
plt.show()

[4]: w6_data = np.genfromtxt('output.log')
plt.plot(w6_data[:, 0], w6_data[:, 1])
plt.title('$w_6$ Order Parameter')
plt.xlabel('$t$')
plt.ylabel('$w_6(t)$')
plt.show()
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Analyzing GROMACS data with freud and MDTraj: Computing an RDF for Water

In this notebook, we demonstrate how freud could be used to compute the RDF of the output of an atomistic
simulation, namely the simulation of TIP4P water. In the process, we show how the subsetting functionality of such
tools can be leveraged to feed data into freud. We use this example to also demonstrate how this functionality can
be replicated with pure NumPy and explain why this usage pattern is sufficient for common use-cases of freud. The
simulation data is read with MDTraj and the results are compared for the same RDF calculation with freud and
MDTraj.

Simulating water

To run this notebook, we have generated data of a simulation of TIP4P using GROMACS. All of the scripts used to
generate this data are provided in this repository, and for convenience the final output files are also saved.

[1]: import mdtraj
import freud
import numpy as np

traj = mdtraj.load_xtc('output/prd.xtc', top='output/prd.gro')
bins = 300
r_max = 1
r_min = 0.01

# Expression selection, a common feature of analysis tools for
# atomistic systems, can be used to identify all oxygen atoms
oxygen_pairs = traj.top.select_pairs('name O', 'name O')

mdtraj_rdf = mdtraj.compute_rdf(
traj, oxygen_pairs, (r_min, r_max), n_bins=bins)

# We can directly use the above selection in freud.
oxygen_indices = traj.top.select('name O')

# Alternatively, we can subset directly using Python logic. Such
(continues on next page)
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# selectors require the user to define the nature of the selection,
# but can be more precisely tailored to a specific system.
oxygen_indices = [atom.index for atom in traj.top.atoms

if atom.name == 'O']

freud_rdf = freud.density.RDF(bins=bins, r_min=r_min, r_max=r_max)
for system in zip(np.asarray(traj.unitcell_vectors),

traj.xyz[:, oxygen_indices, :]):
freud_rdf.compute(system, reset=False)

[2]: from matplotlib import pyplot as plt

[3]: %matplotlib inline

[4]: fig, ax = plt.subplots()
ax.plot(freud_rdf.bin_centers, freud_rdf.rdf, 'o', label='freud', alpha=0.5)
ax.plot(*mdtraj_rdf, 'x', label='mdtraj', alpha=0.5)
ax.set_xlabel('$r$')
ax.set_ylabel('$g(r)$')
ax.set_title('RDF')
ax.legend()

[4]: <matplotlib.legend.Legend at 0x7fb10d1898e0>

Analyzing data from LAMMPS

The following script shows how to use freud to compute the radial distribution function 𝑔(𝑟) on data generated by
the molecular dynamics simulation engine LAMMPS. The input script runs a Lennard-Jones system, which is then
parsed with numpy.genfromtxt.

The input script is below. Note that we must dump images with ix iy iz, so that the mean squared displacement
can be calculated correctly.

[1]: !cat lj.in
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# From http://utkstair.org/clausius/docs/mse614/text/examples.html
# define units
units lj

# specify periodic boundary conditions
boundary p p p

# define atom_style
# full covers everything
atom_style full

# define simulation volume
# If I want N = 512 atoms
# and I want a density of rho = 0.5 atoms/lj-sigma^3
# Then I can determine the size of a cube by
# size = (N/rho)^(1/3)
variable side equal 10
region boxid block 0.0 ${side} 0.0 ${side} 0.0 ${side}
create_box 1 boxid

# specify initial positions of atoms
# sc = simple cubic
# 0.5 = density in lj units
lattice sc 0.50

# place atoms of type 1 in boxid
create_atoms 1 box

# define mass of atom type 1
mass 1 1.0

# specify initial velocity of atoms
# group = all
# reduced temperature is T = 1.0 = lj-eps/kb
# seed for random number generator
# distribution is gaussian (e.g. Maxwell-Boltzmann)
velocity all create 1.0 87287 dist gaussian

# specify interaction potential
# pairwise interaction via the Lennard-Jones potential with a cut-off at 2.5 lj-sigma
pair_style lj/cut 2.5

# specify parameters between atoms of type 1 with an atom of type 1
# epsilon = 1.0, sigma = 1.0, cutoff = 2.5
pair_coeff 1 1 1.0 1.0 2.5

# add long-range tail correction
pair_modify tail yes

# specify parameters for neighbor list
# rnbr = rcut + 0.3
neighbor 0.3 bin

# specify thermodynamic properties to be output
# pe = potential energy
# ke = kinetic energy
# etotal = pe + ke

(continues on next page)
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# temp = temperature
# press = pressure
# density = number density
# output every thousand steps
# norm = normalize by # of atoms (yes or no)
thermo_style custom step pe ke etotal temp press density

# report instantaneous thermo values every 100 steps
thermo 100

# normalize thermo properties by number of atoms (yes or no)
thermo_modify norm no

# specify ensemble
# fixid = 1
# atoms = all
# ensemble = nve or nvt
fix 1 all nve

timestep 0.005

# run 1000 steps in the NVE ensemble
# (this equilibrates positions)
run 1000

# stop fix with given fixid
# fixid = 1
unfix 1

# specify ensemble
# fixid = 2
# atoms = all
# ensemble = nvt
# temp = temperature
# initial temperature = 1.0
# final temperature = 1.0
# thermostat controller gain = 0.1 (units of time, bigger is less tight control)
fix 2 all nvt temp 1.0 1.0 0.1

# run 1000 steps in the NVT ensemble
# (this equilibrates thermostat)
run 1000

# save configurations
# dumpid = 1
# all atoms
# atomic symbol is Ar
# save positions every 100 steps
# filename = output.xyz
#
dump 2 all custom 100 output_custom.xyz x y z ix iy iz

# run 1000 more steps in the NVT ensemble
# (this is data production, from which configurations are saved)
run 8000
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Next, we run LAMMPS to generate the output file. LAMMPS can be installed with conda install -c
conda-forge lammps.

[2]: !lmp_serial -in lj.in

LAMMPS (5 Jun 2019)
Created orthogonal box = (0 0 0) to (10 10 10)

1 by 1 by 1 MPI processor grid
Lattice spacing in x,y,z = 1.25992 1.25992 1.25992
Created 512 atoms

create_atoms CPU = 0.00122023 secs
Neighbor list info ...

update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4, bins = 8 8 8
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/cut, perpetual

attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard

Setting up Verlet run ...
Unit style : lj
Current step : 0
Time step : 0.005

Per MPI rank memory allocation (min/avg/max) = 6.109 | 6.109 | 6.109 Mbytes
Step PotEng KinEng TotEng Temp Press Density

0 -1804.3284 766.5 -1037.8284 1 -2.1872025 0.512
100 -1834.8127 774.55302 -1060.2596 1.0105062 -0.32671112 0.512
200 -1852.2773 789.53605 -1062.7413 1.0300536 -0.30953463 0.512
300 -1857.4621 795.78772 -1061.6744 1.0382097 -0.22960441 0.512
400 -1864.766 801.81089 -1062.9551 1.0460677 -0.24901206 0.512
500 -1860.0198 796.65657 -1063.3633 1.0393432 -0.14280039 0.512
600 -1859.1835 796.96259 -1062.221 1.0397425 -0.2828161 0.512
700 -1848.9874 786.01864 -1062.9688 1.0254646 -0.34512435 0.512
800 -1821.7263 759.86418 -1061.8622 0.9913427 -0.1766353 0.512
900 -1840.7256 777.68022 -1063.0453 1.0145861 -0.318844 0.512

1000 -1862.6606 799.32963 -1063.3309 1.0428306 -0.25224674 0.512
Loop time of 0.197457 on 1 procs for 1000 steps with 512 atoms

Performance: 2187817.275 tau/day, 5064.392 timesteps/s
99.5% CPU use with 1 MPI tasks x no OpenMP threads

MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.13402 | 0.13402 | 0.13402 | 0.0 | 67.87
Bond | 8.2254e-05 | 8.2254e-05 | 8.2254e-05 | 0.0 | 0.04
Neigh | 0.049226 | 0.049226 | 0.049226 | 0.0 | 24.93
Comm | 0.0084078 | 0.0084078 | 0.0084078 | 0.0 | 4.26
Output | 0.00015664 | 0.00015664 | 0.00015664 | 0.0 | 0.08
Modify | 0.0042217 | 0.0042217 | 0.0042217 | 0.0 | 2.14
Other | | 0.001339 | | | 0.68

Nlocal: 512 ave 512 max 512 min
Histogram: 1 0 0 0 0 0 0 0 0 0

(continues on next page)
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Nghost: 1447 ave 1447 max 1447 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 12018 ave 12018 max 12018 min
Histogram: 1 0 0 0 0 0 0 0 0 0

Total # of neighbors = 12018
Ave neighs/atom = 23.4727
Ave special neighs/atom = 0
Neighbor list builds = 100
Dangerous builds = 100
Setting up Verlet run ...

Unit style : lj
Current step : 1000
Time step : 0.005

Per MPI rank memory allocation (min/avg/max) = 6.109 | 6.109 | 6.109 Mbytes
Step PotEng KinEng TotEng Temp Press Density

1000 -1862.6606 799.32963 -1063.3309 1.0428306 -0.25224674 0.512
1100 -1853.4242 819.28434 -1034.1399 1.0688641 -0.16446166 0.512
1200 -1840.5875 793.33971 -1047.2477 1.0350159 -0.21578932 0.512
1300 -1838.9016 796.0771 -1042.8245 1.0385872 -0.19354995 0.512
1400 -1848.5392 752.5312 -1096.008 0.98177587 -0.22928676 0.512
1500 -1856.8763 746.44097 -1110.4353 0.97383035 -0.18936813 0.512
1600 -1869.5931 732.08398 -1137.5091 0.95509978 -0.2751998 0.512
1700 -1887.7451 761.66169 -1126.0834 0.99368779 -0.35301947 0.512
1800 -1882.9325 729.51153 -1153.421 0.95174368 -0.33872437 0.512
1900 -1867.9452 763.40829 -1104.5369 0.99596646 -0.30614623 0.512
2000 -1874.4475 752.8181 -1121.6294 0.98215017 -0.30908533 0.512

Loop time of 0.199068 on 1 procs for 1000 steps with 512 atoms

Performance: 2170111.968 tau/day, 5023.407 timesteps/s
99.7% CPU use with 1 MPI tasks x no OpenMP threads

MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.13415 | 0.13415 | 0.13415 | 0.0 | 67.39
Bond | 6.5804e-05 | 6.5804e-05 | 6.5804e-05 | 0.0 | 0.03
Neigh | 0.049349 | 0.049349 | 0.049349 | 0.0 | 24.79
Comm | 0.0079701 | 0.0079701 | 0.0079701 | 0.0 | 4.00
Output | 0.00013518 | 0.00013518 | 0.00013518 | 0.0 | 0.07
Modify | 0.0060918 | 0.0060918 | 0.0060918 | 0.0 | 3.06
Other | | 0.001308 | | | 0.66

Nlocal: 512 ave 512 max 512 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 1464 ave 1464 max 1464 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 11895 ave 11895 max 11895 min
Histogram: 1 0 0 0 0 0 0 0 0 0

Total # of neighbors = 11895
Ave neighs/atom = 23.2324
Ave special neighs/atom = 0
Neighbor list builds = 100
Dangerous builds = 100
Setting up Verlet run ...

Unit style : lj
(continues on next page)
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Current step : 2000
Time step : 0.005

Per MPI rank memory allocation (min/avg/max) = 7.383 | 7.383 | 7.383 Mbytes
Step PotEng KinEng TotEng Temp Press Density

2000 -1874.4475 752.8181 -1121.6294 0.98215017 -0.30908533 0.512
2100 -1858.3201 763.1433 -1095.1768 0.99562074 -0.25351893 0.512
2200 -1866.9213 770.43352 -1096.4878 1.0051318 -0.27646217 0.512
2300 -1879.7957 721.28174 -1158.514 0.94100683 -0.31881659 0.512
2400 -1886.0524 740.29981 -1145.7526 0.96581841 -0.36988824 0.512
2500 -1862.4955 731.77932 -1130.7162 0.95470231 -0.23656666 0.512
2600 -1847.542 748.14185 -1099.4002 0.97604938 -0.22297358 0.512
2700 -1863.1603 715.01181 -1148.1485 0.93282689 -0.27535839 0.512
2800 -1858.9263 711.64082 -1147.2855 0.92842899 -0.31272288 0.512
2900 -1862.0527 788.4678 -1073.5849 1.0286599 -0.20135611 0.512
3000 -1848.1516 797.66227 -1050.4894 1.0406553 -0.27353978 0.512
3100 -1883.8621 793.05475 -1090.8073 1.0346442 -0.29972206 0.512
3200 -1890.4065 791.32467 -1099.0819 1.032387 -0.35642545 0.512
3300 -1859.2997 745.34089 -1113.9588 0.97239516 -0.26722308 0.512
3400 -1869.8929 762.57135 -1107.3216 0.99487457 -0.14226646 0.512
3500 -1879.6557 732.72846 -1146.9273 0.95594058 -0.21775981 0.512
3600 -1899.0227 766.18046 -1132.8422 0.99958312 -0.2798366 0.512
3700 -1872.6895 817.06218 -1055.6273 1.065965 -0.23193326 0.512
3800 -1891.1356 802.56843 -1088.5672 1.047056 -0.23387156 0.512
3900 -1840.088 753.28729 -1086.8007 0.98276228 -0.21465531 0.512
4000 -1882.7617 803.22857 -1079.5332 1.0479172 -0.31896543 0.512
4100 -1873.9061 787.05281 -1086.8533 1.0268138 -0.26608644 0.512
4200 -1871.6627 832.59728 -1039.0655 1.0862326 -0.29040189 0.512
4300 -1865.3725 819.61212 -1045.7603 1.0692917 -0.22592305 0.512
4400 -1875.5306 806.71297 -1068.8176 1.0524631 -0.31604788 0.512
4500 -1857.109 828.16158 -1028.9474 1.0804456 -0.2464398 0.512
4600 -1857.8912 729.7257 -1128.1655 0.9520231 -0.31385004 0.512
4700 -1842.205 734.17836 -1108.0267 0.95783217 -0.27130372 0.512
4800 -1864.7696 776.14641 -1088.6232 1.012585 -0.31668109 0.512
4900 -1858.1103 793.41913 -1064.6911 1.0351195 -0.16583366 0.512
5000 -1867.7818 815.23276 -1052.5491 1.0635783 -0.28680645 0.512
5100 -1838.0477 725.412 -1112.6357 0.9463953 -0.28647867 0.512
5200 -1810.7731 731.9772 -1078.7959 0.95496047 -0.16033508 0.512
5300 -1837.5311 749.48424 -1088.0469 0.97780071 -0.20281441 0.512
5400 -1873.1094 764.60064 -1108.5088 0.99752204 -0.41358648 0.512
5500 -1888.9361 748.61774 -1140.3184 0.97667025 -0.36938658 0.512
5600 -1869.9513 762.05258 -1107.8988 0.99419776 -0.4223791 0.512
5700 -1858.339 746.55871 -1111.7803 0.97398396 -0.42269281 0.512
5800 -1863.2613 749.34951 -1113.9118 0.97762493 -0.38710722 0.512
5900 -1873.7293 773.93107 -1099.7982 1.0096948 -0.26021895 0.512
6000 -1873.456 787.00426 -1086.4518 1.0267505 -0.22677264 0.512
6100 -1856.3965 789.71834 -1066.6782 1.0302914 -0.23662444 0.512
6200 -1868.1487 781.09973 -1087.0489 1.0190473 -0.13471937 0.512
6300 -1873.9941 740.70637 -1133.2877 0.96634882 -0.26089329 0.512
6400 -1879.5293 758.83006 -1120.6993 0.98999355 -0.40717493 0.512
6500 -1873.208 730.21233 -1142.9956 0.95265797 -0.33679524 0.512
6600 -1893.088 738.17171 -1154.9163 0.96304202 -0.34898503 0.512
6700 -1854.9994 735.97428 -1119.0252 0.96017518 -0.28228204 0.512
6800 -1841.9759 797.06384 -1044.9121 1.0398745 -0.19145452 0.512
6900 -1850.4935 786.14747 -1064.3461 1.0256327 -0.29327665 0.512
7000 -1845.6749 797.15417 -1048.5207 1.0399924 -0.45867335 0.512
7100 -1831.03 827.34343 -1003.6866 1.0793782 -0.179498 0.512
7200 -1888.1042 749.22706 -1138.8771 0.97746518 -0.53010406 0.512
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7300 -1859.9233 754.0352 -1105.8881 0.98373803 -0.39545192 0.512
7400 -1851.9183 787.60897 -1064.3093 1.0275394 -0.37094061 0.512
7500 -1848.0739 759.73299 -1088.3409 0.99117155 -0.34780329 0.512
7600 -1853.6532 764.84642 -1088.8067 0.99784269 -0.098590718 0.512
7700 -1876.6886 756.38707 -1120.3016 0.98680636 -0.17912577 0.512
7800 -1857.6403 719.20424 -1138.4361 0.93829647 -0.32247855 0.512
7900 -1891.2369 707.44358 -1183.7933 0.92295314 -0.44928961 0.512
8000 -1930.5545 747.85472 -1182.6997 0.97567478 -0.2607688 0.512
8100 -1931.3403 744.07929 -1187.261 0.97074924 -0.36763161 0.512
8200 -1920.9036 757.0399 -1163.8637 0.98765806 -0.29103201 0.512
8300 -1904.5561 747.57535 -1156.9807 0.9753103 -0.38464012 0.512
8400 -1844.7405 820.31281 -1024.4277 1.0702059 -0.044405706 0.512
8500 -1860.3078 809.13555 -1051.1723 1.0556237 -0.018849627 0.512
8600 -1841.1531 776.85955 -1064.2935 1.0135154 -0.080192818 0.512
8700 -1860.6583 785.807 -1074.8513 1.0251885 -0.29734141 0.512
8800 -1841.0455 779.78036 -1061.2651 1.017326 -0.11420405 0.512
8900 -1887.3837 878.92659 -1008.4571 1.1466753 -0.34666733 0.512
9000 -1879.4834 767.25891 -1112.2245 1.0009901 -0.3331713 0.512
9100 -1900.1999 818.54475 -1081.6552 1.0678992 -0.19458572 0.512
9200 -1882.1203 794.90843 -1087.2118 1.0370625 -0.25879106 0.512
9300 -1893.5664 783.13068 -1110.4357 1.0216969 -0.25735285 0.512
9400 -1893.5147 756.00962 -1137.5051 0.98631392 -0.26461519 0.512
9500 -1908.8115 742.60538 -1166.2061 0.96882633 -0.4468834 0.512
9600 -1887.0565 762.24949 -1124.807 0.99445465 -0.36695082 0.512
9700 -1878.5858 771.53563 -1107.0502 1.0065696 -0.2300855 0.512
9800 -1848.4047 752.27373 -1096.1309 0.98143997 -0.28729274 0.512
9900 -1865.561 731.41466 -1134.1464 0.95422656 -0.3874617 0.512

10000 -1887.2808 787.80237 -1099.4784 1.0277917 -0.26779032 0.512
Loop time of 1.63759 on 1 procs for 8000 steps with 512 atoms

Performance: 2110423.670 tau/day, 4885.240 timesteps/s
99.4% CPU use with 1 MPI tasks x no OpenMP threads

MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.0823 | 1.0823 | 1.0823 | 0.0 | 66.09
Bond | 0.00054955 | 0.00054955 | 0.00054955 | 0.0 | 0.03
Neigh | 0.39492 | 0.39492 | 0.39492 | 0.0 | 24.12
Comm | 0.064503 | 0.064503 | 0.064503 | 0.0 | 3.94
Output | 0.035598 | 0.035598 | 0.035598 | 0.0 | 2.17
Modify | 0.049172 | 0.049172 | 0.049172 | 0.0 | 3.00
Other | | 0.01058 | | | 0.65

Nlocal: 512 ave 512 max 512 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 1398 ave 1398 max 1398 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 12036 ave 12036 max 12036 min
Histogram: 1 0 0 0 0 0 0 0 0 0

Total # of neighbors = 12036
Ave neighs/atom = 23.5078
Ave special neighs/atom = 0
Neighbor list builds = 800
Dangerous builds = 800
Total wall time: 0:00:02
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[3]: %matplotlib inline

import freud
from matplotlib import pyplot as plt
import numpy as np
import warnings

[4]: with warnings.catch_warnings():
warnings.simplefilter('ignore')
# We read the number of particles, the system box, and the
# particle positions into 3 separate arrays.
N = int(np.genfromtxt(

'output_custom.xyz', skip_header=3, max_rows=1))
box_data = np.genfromtxt(

'output_custom.xyz', skip_header=5, max_rows=3)
data = np.genfromtxt(

'output_custom.xyz', skip_header=9,
invalid_raise=False)

# Remove the unwanted text rows
data = data[~np.isnan(data).all(axis=1)].reshape(-1, N, 6)

box = freud.box.Box.from_box(
box_data[:, 1] - box_data[:, 0])

# We shift the system by half the box lengths to match the
# freud coordinate system, which is centered at the origin.
# Since all methods support periodicity, this shift is simply
# for consistency but does not affect any analyses.
data[..., :3] -= box.L/2
rdf = freud.density.RDF(bins=100, r_max=4, r_min=1)
for frame in data:

rdf.compute(system=(box, frame[:, :3]), reset=False)

msd = freud.msd.MSD(box)
msd.compute(positions=data[:, :, :3], images=data[:, :, 3:])

# Plot the RDF
plt.plot(rdf.bin_centers, rdf.rdf)
plt.title('Radial Distribution Function')
plt.xlabel('$r$')
plt.ylabel('$g(r)$')
plt.show()

# Plot the MSD
plt.plot(msd.msd)
plt.title('Mean Squared Displacement')
plt.xlabel('$t$')
plt.ylabel('MSD$(t)$')
plt.show()
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Using Machine Learning for Structural Identification

This notebook provides a demonstration of how a simple set of descriptors computed by freud can be coupled with
machine learning for structural identification. The set of descriptors used here are not enough to identify complex
crystal structures, but this notebook provides an introduction. For a more powerful set of descriptors, see the paper
Machine learning for crystal identification and discovery (Spellings 2018) and the library pythia, both of which use
freud for their computations.

[1]: import freud
import matplotlib.pyplot as plt
import matplotlib.cm
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
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We generate sample body-centered cubic, face-centered cubic, and simple cubic structures. Each structure has at least
4000 particles.

[2]: N = 4000
noise = 0.04
structures = {}
n = round((N/2)**(1/3))
structures['bcc'] = freud.data.UnitCell.bcc().generate_system(n, sigma_noise=noise)
n = round((N/4)**(1/3))
structures['fcc'] = freud.data.UnitCell.fcc().generate_system(n, sigma_noise=noise)
n = round((N/1)**(1/3))
structures['sc'] = freud.data.UnitCell.sc().generate_system(n, sigma_noise=noise)
for name, (box, positions) in structures.items():

print(name, 'has', len(positions), 'particles.')

bcc has 4394 particles.
fcc has 4000 particles.
sc has 4096 particles.

Next, we compute the Steinhardt order parameters 𝑞𝑙 for 𝑙 ∈ {4, 6, 8, 10, 12}.

We use the Voronoi neighbor list, removing neighbors whose Voronoi facets are small.

[3]: def get_features(box, positions, structure):
voro = freud.locality.Voronoi()
voro.compute(system=(box, positions))
nlist = voro.nlist.copy()
nlist.filter(nlist.weights > 0.1)
features = {}
for l in [4, 6, 8, 10, 12]:

ql = freud.order.Steinhardt(l=l, weighted=True)
ql.compute(system=(box, positions), neighbors=nlist)
features['q{}'.format(l)] = ql.particle_order

return features

[4]: structure_features = {}
for name, (box, positions) in structures.items():

structure_features[name] = get_features(box, positions, name)

Here, we plot a histogram of the 𝑞4 and 𝑞6 values for each structure.

[5]: for l in [4, 6]:
plt.figure(figsize=(3, 2), dpi=300)
for name in structures.keys():

plt.hist(structure_features[name]['q{}'.format(l)], range=(0, 1), bins=100,
→˓label=name, alpha=0.7)

plt.title(r'$q_{{{l}}}$'.format(l=l))
plt.legend()
for lh in plt.legend().legendHandles:

lh.set_alpha(1)
plt.show()
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Next, we will train a Support Vector Machine to predict particles’ structures based on these Steinhardt 𝑄𝑙 descrip-
tors. We build pandas data frames to hold the structure features, encoding the structure as an integer. We use
train_test_split to train on part of the data and test the model on a separate part of the data.

[6]: structure_dfs = {}
for i, structure in enumerate(structure_features):

df = pd.DataFrame.from_dict(structure_features[structure])
df['class'] = i
structure_dfs[structure] = df

[7]: df = pd.concat(structure_dfs.values()).reset_index(drop=True)

[8]: from sklearn.preprocessing import normalize
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

[9]: X = df.drop('class', axis=1).values
X = normalize(X)
y = df['class'].values
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.33, random_state=42)

svm = SVC()
svm.fit(X_train, y_train)

(continues on next page)
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print('Score:', svm.score(X_test, y_test))

Score: 0.9868995633187773

Finally, we use the Uniform Manifold Approximation and Projection method (McInnes 2018, GitHub repo) to project
the high-dimensional descriptors into a two-dimensional plot. Notice that some bcc particles overlap with fcc particles.
This can be expected from the noise that was added to the structures. The particles that were incorrectly classified by
the SVM above are probably located in this overlapping region.

[10]: from umap import UMAP
umap = UMAP(random_state=42)

X_reduced = umap.fit_transform(X)

[11]: plt.figure(figsize=(4, 3), dpi=300)
for i in range(max(y) + 1):

indices = np.where(y == i)[0]
plt.scatter(X_reduced[indices, 0], X_reduced[indices, 1],

color=matplotlib.cm.tab10(i), s=8, alpha=0.2,
label=list(structure_features.keys())[i])

plt.legend()
for lh in plt.legend().legendHandles:

lh.set_alpha(1)
plt.show()

124 Chapter 7. Table of Contents

https://arxiv.org/abs/1802.03426
https://github.com/lmcinnes/umap


freud Documentation, Release 2.4.0

Calculating Strain via Voxelization

This notebook shows how to use freud’s neighbor finding to create a voxelized version of a system.

In brief, we are going to create a set of points that define the centers of our voxels, then assign all particles to one of
these voxels. Then we sum up some property of the particles amongst all particles in a bin.

At the end we want to have a sampling of some particle property in our system on a regular grid (as a NumPy array).

[1]: %matplotlib inline
import freud
import numpy as np
import matplotlib.pyplot as plt
import re
from scipy.sparse import csr_matrix, csc_matrix

This uses data from some text files that were output from the visualization software OVITO (https://ovito.org/)

The files have a header with box information, and then a list of particle info. These files have 10 fields per particle:

(ID#, position(x,y,z), strains(xx,yy,zz,yz,xz,xy))

The goal is to turn this into an (𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 3, 3) NumPy array, where 𝑁𝑥, 𝑁𝑦, 𝑁𝑧 are the number of bins in each
dimension, and each of those bins has an averaged 3x3 strain array.

First we read in the box info from our text files and construct an average box. We need this so we can make our bin
centers

[2]: framefiles = ['data/strain_data/frame{f}'.format(f=f) for f in [100, 110, 120, 130]]

# read all the boxes, so we can make the grid points for voxelizing
boxes = []
for f in framefiles:

ff = open(f, 'r')
_ = ff.readline()
header = ff.readline()

match = re.match('^Lattice=".*"', header)
boxstring = match.group(0)
boxes.append(np.array(str.split(boxstring[9:-1]), dtype=np.float).reshape((3,3)).

→˓T)
ff.close()

# find the average box
ave_box = np.array(boxes).mean(axis=0)

Now we make the bin centers using np.meshgrid, but append and combine the X, Y, and Z coordinates into an
array of shape (𝑁𝑥𝑁𝑦𝑁𝑧, 3) to pass to freud.

[3]: res = (60, 10, 45) # The number of bins (in x,y,z)
xx = np.linspace(-ave_box[0,0]/2,ave_box[0,0]/2,num=res[0])
yy = np.linspace(-ave_box[1,1]/2,ave_box[1,1]/2,num=res[1])
zz = np.linspace(-ave_box[2,2]/2,ave_box[2,2]/2,num=res[2])
XX, YY, ZZ = np.meshgrid(xx,yy,zz)

XYZ = np.append(np.append(XX.flatten().reshape((-1,1)),
YY.flatten().reshape((-1,1)), axis=1),

ZZ.flatten().reshape((-1,1)), axis=1).astype(np.float32)
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Now we iterate over our files and compute the first nearest neighbor (among the bin centers) of the particles, so we
know which bin to average them in.

It is important to use scipy’s csr_matrix for this process when the number of particles is large. These files contain
>80,000 particles, and without the sparse matrix, the dot product to determine grid totals would be extremely slow.

[4]: master_strains = np.zeros((XYZ.shape[0], 6)) # matrix to sum into

for i in range(len(framefiles)):
data = np.loadtxt(framefiles[i], skiprows=2).astype(np.float32)

box = freud.box.Box(Lx=boxes[i][0, 0],
Ly=boxes[i][1, 1],
Lz=boxes[i][2, 2],
yz=boxes[i][1, 2],
xz=boxes[i][0, 2],
xy=boxes[i][0, 1])

nlist = freud.AABBQuery(box, XYZ).query(
data[:,1:4], {'num_neighbors': 1}).toNeighborList()

neighbors = nlist.point_indices

sprse = csr_matrix((np.ones(len(neighbors)), (neighbors, np.
→˓arange(len(neighbors)))),

shape=(XYZ.shape[0], len(neighbors)))

# strain data
sdata = data[:, 4:]
binned = np.zeros((XYZ.shape[0], 6))
# number of particles in each bin
grid_totals = sprse.dot(np.ones(len(neighbors)))
grid_totals[grid_totals==0] = 1 # get rid of division errors

for j in range(6):
binned[:,j] = sprse.dot(sdata[:, j]) / grid_totals

master_strains = master_strains + binned

master_strains = master_strains/len(framefiles) # divide by number of frames

Now we pack up the resulting array into the shape we want it to be: (𝑁𝑥, 𝑁𝑦, 𝑁𝑧, 3, 3)

[5]: final_matrix = np.zeros((res[1],res[0],res[2],3,3))

# this mapping turns 6 strain values into a symmetric (3,3) matrix
voigt_map = {0:(0,0), 1:(1,1), 2:(2,2), 3:(1,2), 4:(0,2), 5:(0,1)}

for i in range(6):
v = voigt_map[i]
final_matrix[:,:,:,v[0],v[1]] = master_strains[:,i].reshape(res[1],res[0],res[2])
if v[0]!=v[1]:

final_matrix[:,:,:,v[1],v[0]] = master_strains[:,i].reshape(res[1],res[0],
→˓res[2])

Since we are only using four frames, the distribution is not very well sampled. But we can get a clue that a distinct
distribution of strain is emerging if we average along the first axis of the matrix (this particular system should not vary
in that direction)
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[6]: plt.figure(figsize=(10,10))
plt.imshow(final_matrix[:,:,:,0,0].mean(axis=0),

origin='lower', cmap=plt.cm.bwr,
vmin=-0.04, vmax=0.04, interpolation='none')

plt.colorbar()
plt.show()
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Visualizing analyses with fresnel

In this notebook, we simulate a system of tetrahedra, color particles according to their local density, and path-trace the
resulting image with fresnel.

The cell below runs a short HOOMD-blue simulation of tetrahedra using Hard Particle Monte Carlo (HPMC).

[1]: import hoomd
import hoomd.hpmc
hoomd.context.initialize('')

# Create an 8x8x8 simple cubic lattice
system = hoomd.init.create_lattice(

unitcell=hoomd.lattice.sc(a=1.5), n=8)

# Create our tetrahedra and configure the HPMC integrator
mc = hoomd.hpmc.integrate.convex_polyhedron(seed=42)
mc.set_params(d=0.2, a=0.1)
vertices = [( 0.5, 0.5, 0.5),

(-0.5,-0.5, 0.5),
(-0.5, 0.5,-0.5),
( 0.5,-0.5,-0.5)]

mc.shape_param.set('A', vertices=vertices)

# Run for 5,000 steps
hoomd.run(5e3)
snap = system.take_snapshot()

HOOMD-blue v2.6.0-151-gea140cffb DOUBLE HPMC_MIXED MPI TBB SSE SSE2 SSE3 SSE4_1 SSE4_
→˓2 AVX AVX2
Compiled: 09/25/2019
Copyright (c) 2009-2019 The Regents of the University of Michigan.
-----
You are using HOOMD-blue. Please cite the following:

* J A Anderson, C D Lorenz, and A Travesset. "General purpose molecular dynamics
simulations fully implemented on graphics processing units", Journal of
Computational Physics 227 (2008) 5342--5359

* J Glaser, T D Nguyen, J A Anderson, P Liu, F Spiga, J A Millan, D C Morse, and
S C Glotzer. "Strong scaling of general-purpose molecular dynamics simulations
on GPUs", Computer Physics Communications 192 (2015) 97--107

-----
-----
You are using HPMC. Please cite the following:

* J A Anderson, M E Irrgang, and S C Glotzer. "Scalable Metropolis Monte Carlo
for simulation of hard shapes", Computer Physics Communications 204 (2016) 21
--30

-----
HOOMD-blue is running on the CPU
notice(2): Group "all" created containing 512 particles

** starting run **
Time 00:00:10 | Step 2094 / 5000 | TPS 209.394 | ETA 00:00:13
Time 00:00:20 | Step 4238 / 5000 | TPS 214.352 | ETA 00:00:03
Time 00:00:23 | Step 5000 / 5000 | TPS 213.528 | ETA 00:00:00
Average TPS: 212.118
---------
notice(2): -- HPMC stats:
notice(2): Average translate acceptance: 0.749166
notice(2): Average rotate acceptance: 0.867601
notice(2): Trial moves per second: 434403

(continues on next page)
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(continued from previous page)

notice(2): Overlap checks per second: 3.12535e+07
notice(2): Overlap checks per trial move: 71.946
notice(2): Number of overlap errors: 0

** run complete **

Now we import the modules needed for analysis and visualization.

[2]: import fresnel
import freud
import matplotlib.cm
from matplotlib.colors import Normalize
import numpy as np
device = fresnel.Device()

Next, we’ll set up the arrays needed for the scene and its geometry. This includes the analysis used for coloring
particles.

[3]: poly_info = fresnel.util.convex_polyhedron_from_vertices(vertices)
positions = snap.particles.position
orientations = snap.particles.orientation
box = freud.Box.from_box(snap.box)
ld = freud.density.LocalDensity(3.0, 1.0)
ld.compute(system=snap)
colors = matplotlib.cm.viridis(Normalize()(ld.density))
box_points = np.asarray([

box.make_absolute(
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 0],
[1, 1, 0], [1, 1, 0], [0, 1, 1], [0, 1, 1],
[0, 1, 1], [1, 0, 1], [1, 0, 1], [1, 0, 1]]),

box.make_absolute(
[[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0],
[0, 1, 0], [1, 1, 1], [1, 1, 1], [0, 1, 0],
[0, 0, 1], [0, 0, 1], [1, 1, 1], [1, 0, 0]])])

This cell creates the scene and geometry objects to be rendered by fresnel.

[4]: scene = fresnel.Scene(device)
geometry = fresnel.geometry.ConvexPolyhedron(

scene, poly_info,
position=positions,
orientation=orientations,
color=fresnel.color.linear(colors))

geometry.material = fresnel.material.Material(
color=fresnel.color.linear([0.25, 0.5, 0.9]),
roughness=0.8, primitive_color_mix=1.0)

geometry.outline_width = 0.05
box_geometry = fresnel.geometry.Cylinder(

scene, points=box_points.swapaxes(0, 1))
box_geometry.radius[:] = 0.1
box_geometry.color[:] = np.tile([0, 0, 0], (12, 2, 1))
box_geometry.material.primitive_color_mix = 1.0
scene.camera = fresnel.camera.fit(scene, view='isometric', margin=0.1)

First, we preview the scene. (This doesn’t use path tracing, and is much faster.)

[5]: fresnel.preview(scene, aa_level=3, w=600, h=600)
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[5]:

Finally, we use path tracing for a high quality image. The number of light samples can be increased to reduce path
tracing noise.

[6]: fresnel.pathtrace(scene, light_samples=16, w=600, h=600)
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[6]:

Visualization with plato

In this notebook, we run a Lennard-Jones simulation, color particles according to their local density computed with
freud, and display the results with plato. Note that plato has multiple backends – see the plato documentation for
information about each backend and the features it supports.

[1]: import hoomd
import hoomd.md
hoomd.context.initialize('')

# Silence the HOOMD output
hoomd.util.quiet_status()
hoomd.option.set_notice_level(0)

(continues on next page)
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# Create a 10x10x10 simple cubic lattice of particles with type name A
system = hoomd.init.create_lattice(unitcell=hoomd.lattice.sc(a=1.5, type_name='A'),
→˓n=10)

# Specify Lennard-Jones interactions between particle pairs
nl = hoomd.md.nlist.cell()
lj = hoomd.md.pair.lj(r_cut=3.0, nlist=nl)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)

# Integrate at constant temperature
hoomd.md.integrate.mode_standard(dt=0.005)
integrator = hoomd.md.integrate.nvt(group=hoomd.group.all(), kT=0.01, tau=0.5)
integrator.randomize_velocities(seed=42)

# Run for 10,000 time steps
hoomd.run(10e3)
snap = system.take_snapshot()

HOOMD-blue v2.6.0-151-gea140cffb DOUBLE HPMC_MIXED MPI TBB SSE SSE2 SSE3 SSE4_1 SSE4_
→˓2 AVX AVX2
Compiled: 09/25/2019
Copyright (c) 2009-2019 The Regents of the University of Michigan.
-----
You are using HOOMD-blue. Please cite the following:

* J A Anderson, C D Lorenz, and A Travesset. "General purpose molecular dynamics
simulations fully implemented on graphics processing units", Journal of
Computational Physics 227 (2008) 5342--5359

* J Glaser, T D Nguyen, J A Anderson, P Liu, F Spiga, J A Millan, D C Morse, and
S C Glotzer. "Strong scaling of general-purpose molecular dynamics simulations
on GPUs", Computer Physics Communications 192 (2015) 97--107

-----
HOOMD-blue is running on the CPU

Now we import the modules needed for visualization.

[2]: import freud
import matplotlib.cm
from matplotlib.colors import Normalize
import numpy as np
import plato
# For interactive scenes, use:
import plato.draw.pythreejs as draw
# For static scenes, use:
#import plato.draw.fresnel as draw

This code sets up the plato Scene object with the particles and colors computed above.

[3]: positions = snap.particles.position
box = freud.Box.from_box(snap.box)
ld = freud.density.LocalDensity(3.0, 1.0)
ld.compute(system=snap)
colors = matplotlib.cm.viridis(Normalize()(ld.density))
radii = np.ones(len(positions)) * 0.5
box_prim = draw.Box.from_box(box, width=0.2)
sphere_prim = draw.Spheres(

positions=snap.particles.position,
radii=radii,

(continues on next page)
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colors=colors,
vertex_count=32)

scene = draw.Scene((sphere_prim, box_prim), zoom=1.5)

Click and drag the 3D scene below - it’s interactive!

[4]: scene.show()

Renderer(camera=OrthographicCamera(bottom=-15.0,
→˓children=(DirectionalLight(intensity=0.692820323027551, posit...

Visualizing 3D Voronoi and Voxelization

The plato-draw package allows for visualizing particle data in 2D and 3D using a variety of backend libraries. Here,
we show a 3D Voronoi diagram drawn using fresnel and pythreejs. We use rowan to generate the view rotation.

To install dependencies:

• conda install -c conda-forge fresnel

• pip install plato-draw rowan

[1]: import freud
import matplotlib.cm
import numpy as np
import rowan
import plato.draw.fresnel
backend = plato.draw.fresnel
# For interactive scenes:
# import plato.draw.pythreejs
# backend = plato.draw.pythreejs

[2]: def plot_crystal(box, positions, colors=None, radii=None, backend=None,
polytopes=[], polytope_colors=None):

if backend is None:
backend = plato.draw.fresnel

if colors is None:
colors = np.array([[0.5, 0.5, 0.5, 1]] * len(positions))

if radii is None:
radii = np.array([0.5] * len(positions))

sphere_prim = backend.Spheres(positions=positions, colors=colors, radii=radii)
box_prim = backend.Box.from_box(box, width=0.1)
if polytope_colors is None:

polytope_colors = colors * np.array([1, 1, 1, 0.4])
polytope_prims = []
for p, c in zip(polytopes, polytope_colors):

p_prim = backend.ConvexPolyhedra(
positions=[[0, 0, 0]], colors=c, vertices=p, outline=0)

polytope_prims.append(p_prim)
rotation = rowan.multiply(

rowan.from_axis_angle([1, 0, 0], np.pi/10),
rowan.from_axis_angle([0, 1, 0], -np.pi/10))

scene = backend.Scene([sphere_prim, box_prim, *polytope_prims],
zoom=3, rotation=rotation)

if backend is not plato.draw.fresnel:
scene.enable('directional_light')

(continues on next page)
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else:
scene.enable('antialiasing')

scene.show()

We generate an fcc structure and add Gaussian noise to the positions. Colors are assigned randomly.

[3]: np.random.seed(12)
box, positions = freud.data.UnitCell.fcc().generate_system(3, scale=2, sigma_noise=0.
→˓05)
cmap = matplotlib.cm.get_cmap('tab20')
colors = cmap(np.random.rand(len(positions)))

[4]: plot_crystal(box, positions, colors, backend=backend)

We make a Voronoi tesselation of the system and plot it in 3D. The Voronoi cells are approximately rhombic dodeca-
hedra, which tesselate 3D space in a face-centered cubic lattice.

[5]: voro = freud.locality.Voronoi()
voro.compute(system=(box, positions))
plot_crystal(box, positions, colors=colors,

backend=backend, polytopes=voro.polytopes)
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We generate a voxelization of this space by creating a dense lattice of points on a simple cubic lattice.

[6]: def make_cubic_grid(box, voxels_per_side):
v_space = np.linspace(0, 1, voxels_per_side+1)
v_space = (v_space[:-1] + v_space[1:])/2 # gets centers of the voxels
return np.array([box.make_absolute([x, y, z])

for x in v_space for y in v_space for z in v_space])

[7]: voxels_per_side = 30
cubic_grid = make_cubic_grid(box, voxels_per_side)

# Make the spheres overlap just a bit
radii = np.ones(len(cubic_grid)) * 0.8 * np.max(box.L) / voxels_per_side

plot_crystal(box, cubic_grid, radii=radii, backend=backend)
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We color the voxels by their first nearest neighbor. This is mathematically equivalent to being inside the corresponding
Voronoi cell. Here, we get the neighbor indices (this can be used to separate the Voronoi cells into voxels).

[8]: aq = freud.AABBQuery(box, positions)
voxel_neighbors = -np.ones(len(cubic_grid), dtype=np.int)
for i, j, distance in aq.query(cubic_grid, {'num_neighbors': 1}):

voxel_neighbors[i] = j

Next, we use these indices to color and draw the voxelization.

[9]: voxel_colors = np.array([colors[i] for i in voxel_neighbors])
plot_crystal(box, cubic_grid, colors=voxel_colors,

radii=radii, backend=backend)

136 Chapter 7. Table of Contents



freud Documentation, Release 2.4.0

7.5.4 Benchmarks

Performance is a central consideration for freud. Below are some benchmarks comparing freud to other tools offering
similar analysis methods.

Benchmarking Neighbor Finding against scipy

The neighbor finding algorithms in freud are highly efficient and rely on parallelized C++ code. Below, we show a
benchmark of freud’s AABBQuery algorithm against the scipy.spatial.cKDTree. This benchmark was run
on an Intel(R) Xeon(R) i3-8100B CPU @ 3.60GHz.

[1]: import freud
import scipy.spatial
import numpy as np
import matplotlib.pyplot as plt
import timeit
from tqdm.notebook import tqdm

[2]: def make_scaled_system(N, Nneigh=12):
L = (4 / 3 * np.pi * N / Nneigh)**(1/3)
return freud.data.make_random_system(L, N)

(continues on next page)
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(continued from previous page)

box, points = make_scaled_system(1000)

Timing Functions

[3]: def time_statement(stmt, repeat=5, number=100, **kwargs):
timer = timeit.Timer(stmt=stmt, globals=kwargs)
times = timer.repeat(repeat, number)
return np.mean(times), np.std(times)

[4]: def time_scipy_cKDTree(box, points):
shifted_points = points + np.asarray(box.L)/2
# SciPy only supports cubic boxes
assert box.Lx == box.Ly == box.Lz
assert box.xy == box.xz == box.yz == 0
return time_statement("kdtree = scipy.spatial.cKDTree(points, boxsize=L);"

"kdtree.query_ball_tree(kdtree, r=rcut)",
scipy=scipy, points=shifted_points, L=box.Lx, rcut=1.0)

[5]: def time_freud_AABBQuery(box, points):
return time_statement("aq = freud.locality.AABBQuery(box, points);"

"aq.query(points, {'r_max': r_max, 'exclude_ii': False}).
→˓toNeighborList()",

freud=freud, box=box, points=points, r_max=1.0)

[6]: # Test timing functions
kd_t = time_scipy_cKDTree(box, points)
print(kd_t)
abq_t = time_freud_AABBQuery(box, points)
print(abq_t)

(0.6436181232333184, 0.008598492136056879)
(0.09153120275586843, 0.00780408130095089)

Perform Measurements

[7]: def measure_runtime_scaling_N(Ns, r_max=1.0):
result_times = []
for N in tqdm(Ns):

box, points = make_scaled_system(N)
result_times.append((

time_scipy_cKDTree(box, points),
time_freud_AABBQuery(box, points)))

return np.asarray(result_times)

[8]: def plot_result_times(result_times, Ns):
fig, ax = plt.subplots(figsize=(6, 4), dpi=200)
ax.plot(Ns, result_times[:, 0, 0]/100, 'o',

linestyle='-', markersize=5,
label="scipy v{} cKDTree".format(scipy.__version__))

(continues on next page)
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ax.plot(Ns, result_times[:, 1, 0]/100, 'x',
linestyle='-', markersize=5, c='#2ca02c',
label="freud v{} AABBQuery".format(freud.__version__))

ax.set_xlabel(r'Number of points', fontsize=15)
ax.set_ylabel(r'Runtime (s)', fontsize=15)
ax.legend(fontsize=15)

ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.tick_params(axis='both', which='both', labelsize=12)
fig.tight_layout()

return fig, ax

[9]: # Use geometrically-spaced values of N, rounded to one significant figure
Ns = list(sorted(set(map(

lambda x: int(round(x, -int(np.floor(np.log10(np.abs(x)))))),
np.exp(np.linspace(np.log(50), np.log(5000), 10))))))

[10]: result_times = measure_runtime_scaling_N(Ns)
fig, ax = plot_result_times(result_times, Ns)

HBox(children=(FloatProgress(value=0.0, max=10.0), HTML(value='')))
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Benchmarking RDF against MDAnalysis

The algorithms in freud are highly efficient and rely on parallelized C++ code. Below, we show a benchmark
of freud.density.RDF against MDAnalysis.analysis.rdf. This benchmark was run on an Intel(R)
Core(TM) i3-8100B CPU @ 3.60GHz.

[1]: import freud
import gsd
import MDAnalysis
import MDAnalysis.analysis.rdf
import multiprocessing as mp
import numpy as np
import matplotlib.pyplot as plt
import timeit
from tqdm import tqdm

[2]: trajectory_filename = 'data/rdf_benchmark.gsd'
r_max = 5
r_min = 0.1
nbins = 75

[3]: trajectory = MDAnalysis.coordinates.GSD.GSDReader(trajectory_filename)
topology = MDAnalysis.core.topology.Topology(n_atoms=trajectory[0].n_atoms)
u = MDAnalysis.as_Universe(topology, trajectory_filename)

rdf = MDAnalysis.analysis.rdf.InterRDF(g1=u.atoms, g2=u.atoms,
nbins=nbins,
range=(r_min, r_max)).run()

[4]: plt.plot(rdf.bins, rdf.rdf)
plt.show()

[5]: freud_rdf = freud.density.RDF(bins=nbins, r_max=r_max, r_min=r_min)
for frame in trajectory:

freud_rdf.compute(system=frame, reset=False)
freud_rdf
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[5]:

Timing Functions

[6]: def time_statement(stmt, repeat=3, number=1, **kwargs):
timer = timeit.Timer(stmt=stmt, globals=kwargs)
times = timer.repeat(repeat, number)
return np.mean(times), np.std(times)

[7]: def time_mdanalysis_rdf(trajectory_filename, r_max, r_min, nbins):
trajectory = MDAnalysis.coordinates.GSD.GSDReader(trajectory_filename)
frame = trajectory[0]
topology = MDAnalysis.core.topology.Topology(n_atoms=frame.n_atoms)
u = MDAnalysis.as_Universe(topology, trajectory_filename)
code = """rdf = MDAnalysis.analysis.rdf.InterRDF(g1=u.atoms, g2=u.atoms,

→˓nbins=nbins, range=(r_min, r_max)).run()"""
return time_statement(code, MDAnalysis=MDAnalysis, u=u, r_max=r_max, r_min=r_min,

→˓nbins=nbins)

[8]: def time_freud_rdf(trajectory_filename, r_max, r_min, nbins):
trajectory = MDAnalysis.coordinates.GSD.GSDReader(trajectory_filename)
code = """

rdf = freud.density.RDF(bins=nbins, r_max=r_max, r_min=r_min)
for frame in trajectory:

rdf.compute(system=frame, reset=False)"""
return time_statement(code, freud=freud, trajectory=trajectory, r_max=r_max, r_

→˓min=r_min, nbins=nbins)

[9]: # Test timing functions
params = dict(

trajectory_filename=trajectory_filename,
r_max=r_max,
r_min=r_min,
nbins=nbins)

(continues on next page)
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def system_size(trajectory_filename, **kwargs):
with gsd.hoomd.open(params['trajectory_filename'], 'rb') as trajectory:

return {'frames': len(trajectory),
'particles': len(trajectory[0].particles.position)}

print(system_size(**params))
mdanalysis_rdf_runtime = time_mdanalysis_rdf(**params)
print('MDAnalysis:', mdanalysis_rdf_runtime)
freud_rdf_runtime = time_freud_rdf(**params)
print('freud:', freud_rdf_runtime)

{'frames': 5, 'particles': 15625}
MDAnalysis: (18.00504128, 0.054983033593944214)
freud: (2.8556541516666747, 0.05481114115556424)

Perform Measurements

[10]: def measure_runtime_scaling_r_max(r_maxes, **params):
result_times = []
for r_max in tqdm(r_maxes):

params.update(dict(r_max=r_max))
freud.parallel.set_num_threads(1)
freud_single = time_freud_rdf(**params)
freud.parallel.set_num_threads(0)
result_times.append((time_mdanalysis_rdf(**params), freud_single, time_freud_

→˓rdf(**params)))
return np.asarray(result_times)

[11]: def plot_result_times(result_times, r_maxes, frames, particles):
plt.figure(figsize=(6, 4), dpi=200)
plt.errorbar(r_maxes, result_times[:, 0, 0], result_times[:, 0, 1],

label="MDAnalysis v{} analysis.rdf.InterRDF".format(MDAnalysis.__
→˓version__))

plt.errorbar(r_maxes, result_times[:, 1, 0], result_times[:, 1, 1],
label="freud v{} density.RDF, 1 thread".format(freud.__version__))

plt.errorbar(r_maxes, result_times[:, 2, 0], result_times[:, 2, 1],
label="freud v{} density.RDF, {} threads".format(freud.__version__,

→˓mp.cpu_count()))
plt.title(r'RDF for {} frames, {} particles'.format(frames, particles))
plt.xlabel(r'RDF $r_{{max}}$')
plt.ylabel(r'Average Runtime (s)')
plt.yscale('log')
plt.legend()
plt.show()

[12]: r_maxes = [0.2, 0.3, 0.5, 1, 2, 3]

[13]: result_times = measure_runtime_scaling_r_max(r_maxes, **params)
plot_result_times(result_times, r_maxes, **system_size(params['trajectory_filename']))

100%|| 6/6 [00:31<00:00, 5.28s/it]
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[14]: print('Speedup, parallel freud / serial freud: {:.3f}x'.format(np.average(result_
→˓times[:, 1, 0] / result_times[:, 2, 0])))
print('Speedup, parallel freud / MDAnalysis: {:.3f}x'.format(np.average(result_times[:
→˓, 0, 0] / result_times[:, 2, 0])))
print('Speedup, serial freud / MDAnalysis: {:.3f}x'.format(np.average(result_times[:,
→˓0, 0] / result_times[:, 1, 0])))

Speedup, parallel freud / serial freud: 2.900x
Speedup, parallel freud / MDAnalysis: 7.182x
Speedup, serial freud / MDAnalysis: 2.619x

7.6 Query API

This page provides a thorough review of how neighbor finding is structured in freud. It assumes knowledge at the
level of the Finding Neighbors level of the tutorial; if you’re not familiar with using the query method with query
arguments to find neighbors of points, please familiarize yourself with that section of the tutorial.

The central interface for neighbor finding is the freud.locality.NeighborQuery family of classes, which
provide methods for dynamically finding neighbors given a freud.box.Box. The freud.locality.
NeighborQuery class defines an abstract interface for neighbor finding that is implemented by its subclasses,
namely the freud.locality.LinkCell and freud.locality.AABBQuery classes. These classes repre-
sent specific data structures used to accelerate neighbor finding. These two different methods have different per-
formance characteristics, but in most cases freud.locality.AABBQuery performs at least as well as, if not
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better than, freud.locality.LinkCell and is entirely parameter free, so it is the default method of choice used
internally in freud’s PairCompute classes.

In general, these data structures operate by constructing them using one set of points, after which they can be queried
to efficiently find the neighbors of arbitrary other points using freud.locality.NeighborQuery.query().

7.6.1 Query Arguments

The table below describes the set of valid query arguments.

Query
Argu-
ment

Definition Data
type

Legal Val-
ues

Valid for

mode The type of query to perform (dis-
tance cutoff or number of neighbors)

str ‘none’,
‘ball’,
‘nearest’

freud.locality.AABBQuery,
freud.locality.LinkCell

r_max Maximum distance to find neighbors float r_max > 0 freud.locality.AABBQuery,
freud.locality.LinkCell

r_min Minimum distance to find neighbors float 0 <= r_min
< r_max

freud.locality.AABBQuery,
freud.locality.LinkCell

num_neighborsNumber of neighbors int num_neighbors
> 0

freud.locality.AABBQuery,
freud.locality.LinkCell

ex-
clude_ii

Whether or not to include neighbors
with the same index in the array

bool True/False freud.locality.AABBQuery,
freud.locality.LinkCell

r_guess Initial search distance for sequence
of ball queries

float r_guess > 0 freud.locality.AABBQuery

scale Scale factor for r_guess when not
enough neighbors are found

float scale > 1 freud.locality.AABBQuery

7.6.2 Query Modes

Ball Query (Distance Cutoff)

A ball query finds all particles within a specified radial distance of the provided query points. This query is executed
when mode='ball'. As described in the table above, this mode can be coupled with filters for a minimum distance
(r_min) and/or self-exclusion (exclude_ii).

Nearest Neighbors Query (Fixed Number of Neighbors)

A nearest neighbor query (sometimes called 𝑘-nearest neighbors) finds a desired number of neighbor points for each
query point, ordered by distance to the query point. This query is executed when mode='nearest'. As described in
the table above, this mode can be coupled with filters for a maximum distance (r_max), minimum distance (r_min),
and/or self-exclusion (exclude_ii).
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Mode Deduction

The mode query argument specifies the type of query that is being performed, and it therefore governs how other
arguments are interpreted. In most cases, however, the query mode can be deduced from the set of query arguments.
Specifically, any query with the num_neighbors key set is assumed to be a query with mode='nearest'. One
of num_neighbors or r_max must always be specified to form a valid set of query arguments. Specifying the
mode key explicitly will ensure that querying behavior is consistent if additional query modes are added to freud.

7.6.3 Query Results

Although they don’t typically need to be operated on directly, it can be useful to know a little about the objects
returned by queries. The freud.locality.NeighborQueryResult stores the query_points passed to
a query and returns neighbors for them one at a time (like any Python iterator). The primary goal of the
result class is to support easy iteration and conversion to more persistent formats. Since it is an iterator, you can
use any typical Python approach to consuming it, including passing it to list to build a list of the neighbors. For
a more freud-friendly approach, you can use the toNeighborList method to convert the object into a freud
freud.locality.NeighborList. Under the hood, the underlying C++ classes loop through candidate points
and identifying neighbors for each query_point; this is the same process that occurs when Compute classes
employ NeighborQuery objects for finding neighbors on-the-fly, but in that case it all happens on the C++ side.

7.6.4 Custom NeighborLists

Thus far, we’ve mostly discussed NeighborLists as a way to persist neighbor information beyond a single query.
In Using freud Efficiently, more guidance is provided on how you can use these objects to speed up certain uses of
freud. However, these objects are also extremely useful because they provide a completely customizable way to specify
neighbors to freud. Of particular note here is the freud.locality.NeighborList.from_arrays() factory
function that allows you to make freud.locality.NeighborList objects by directly specifying the (i, j)
pairs that should be in the list. This kind of explicit construction of the list enables custom analyses that would
otherwise be impossible. For example, consider a molecular dynamics simulation in which particles only interact via
extremely short-ranged patches on their surface, and that particles should only be considered bonded if their patches are
actually interacting, irrespective of how close together the particles themselves are. This type of neighbor interaction
cannot be captured by any normal querying mode, but could be constructed by the user and then fed to freud for
downstream analysis.

7.6.5 Nearest Neighbor Asymmetry

There is one important but easily overlooked detail associated with using query arguments with mode 'nearest'.
Consider a simple example of three points on the x-axis located at -1, 0, and 2 (and assume the box is of dimensions
(100, 100, 100), i.e. sufficiently large that periodicity plays no role):

box = [100, 100, 100]
points = [[-1, 0, 0], [0, 0, 0], [2, 0, 0]]
query_args = dict(mode='nearest', num_neighbors=1, exclude_ii=True)
list(freud.locality.AABBQuery(box, points).query(points, query_args))
# Output: [(0, 1, 1), (1, 0, 1), (2, 1, 2)]

Evidently, the calculation is not symmetric. This feature of nearest neighbor queries can have unexpected side ef-
fects if a PairCompute is performed using distinct points and query_points and the two are interchanged.
In such cases, users should always keep in mind that freud promises that every query_point will end up with
num_neighbors points (assuming no hard cutoff r_max is imposed and enough points are present in the system).
However, it is possible (and indeed likely) that any given point will have more or fewer than that many neighbors.
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This distinction can be particularly tricky for calculations that depend on vector directionality: freud imposes the con-
vention that bond vectors always point from query_point to point, so users of calculations like PMFTs where
directionality is important should keep this in mind.

7.7 Using freud Efficiently

The freud library is designed to be both fast and easy-to-use. In many cases, the library’s performance is good enough
that users don’t need to worry about their usage patterns. However, in highly performance-critical applications (such
as real-time visualization or on-the-fly calculations mid-simulation), uses can benefit from knowing the best ways to
make use of freud. This page provides some guidance on this topic.

7.7.1 Reusing Locality Information

Perhaps the most powerful method users have at their disposal for speeding up calculations is proper reuse of the data
structures in freud.locality. As one example, consider using freud to calculate multiple neighbor-based quanti-
ties for the same set of data points. It is important to recognize that internally, each time such a calculation is performed
using a (box, points) tuple, the compute class is internally rebuilding a neighbor-finding accelerator such a
freud.locality.AABBQuery object and then using it to find neighbors:

# Behind the scenes, freud is essentially running
# freud.locality.AABBQuery(box, points).query(points, dict(r_max=5, exclude_ii=True))
# and feeding the result to the RDF calculation.
rdf = freud.density.RDF(bins=50, r_max=5)
rdf.compute(system=(box, points))

If users anticipate performing many such calculations on the same system of points, they can amortize the cost of
rebuilding the AABBQuery object by constructing it once and then passing it into multiple computations:

# Now, let's instead reuse the object for a pair of calculations:
nq = freud.locality.AABBQuery(box=box, points=points)
rdf = freud.density.RDF(bins=50, r_max=5)
rdf.compute(system=nq)

r_max = 4
orientations = np.array([[1, 0, 0, 0]] * num_points)
pmft = freud.pmft.PMFTXYZ(r_max, r_max, r_max, bins=100)
pmft.compute(system=nq, orientations=orientations)

This reuse can significantly improve performance in e.g. visualization contexts where users may wish to calculate a
bond order diagram and an RDF at each frame, perhaps for integration with a visualization toolkit like OVITO.

A slightly different use-case would be the calculation of multiple quantities based on exactly the same set of neigh-
bors. If the user in fact expects to perform computations with the exact same pairs of neighbors (for example, to
compute freud.order.Steinhardt for multiple 𝑙 values), then the user can further speed up the calculation by
precomputing the entire freud.NeighborList and storing it for future use.

r_max = 3
nq = freud.locality.AABBQuery(box=box, points=points)
nlist = nq.query(points, dict(r_max=r_max))
q6_arrays = []
for l in range(3, 6):

ql = freud.order.Steinhardt(l=l)
q6_arrays.append(ql.compute((box, points), neighbors=nlist).particle_order)
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Notably, if the user calls a compute method with compute(system=(box, points)), unlike in the examples
above freud will not construct a freud.locality.NeighborQuery internally because the full set of neighbors
is completely specified by the NeighborList. In all these cases, freud does the minimal work possible to find
neighbors, so judicious use of these data structures can substantially accelerate your code.

7.7.2 Proper Data Inputs

Minor speedups may also be gained from passing properly structured data to freud. The package was originally
designed for analyzing particle simulation trajectories, which are typically stored in single-precision binary formats.
As a result, the freud library also operates in single precision and therefore converts all inputs to single-precision.
However, NumPy will typically work in double precision by default, so depending on how data is streamed to freud,
the package may be performing numerous data copies in order to ensure that all its data is in single-precision. To avoid
this problem, make sure to specify the appropriate data types (numpy.float32) when constructing your NumPy arrays.

7.8 Reading Simulation Data for freud

The freud package is designed for maximum flexibility by making minimal assumptions about its data. However,
users accustomed to the more restrictive patterns of most other tools may find this flexibility confusing. In particular,
knowing how to provide data from specific simulation sources can be a significant source of confusion. This page is
intended to describe how various types of data may be converted into a form suitable for freud.

To simplify the examples below, we will assume in all cases that the user wishes to compute a radial
distribution function over all frames in the trajectory and that the following code has already been run:

import freud
rdf = freud.density.RDF(bins=50, r_max=5)

7.8.1 Native Integrations

The freud library offers interoperability with several popular tools for particle simulations, analysis, and visualization.
Below is a list of file formats and tools that are directly supported as “system-like” objects (see freud.locality.
NeighborQuery.from_system). Such system-like objects are data containers that store information about a
periodic box and particle positions. Other attributes, such as particle orientations, are not included automatically in
the system representation and must be loaded as separate NumPy arrays.

GSD Trajectories

Using the GSD Python API, GSD files can be easily integrated with freud as shown in the Quickstart Guide. This
format is natively supported by HOOMD-blue. Note: the GSD format can also be read by MDAnalysis and garnett.
Here, we provide an example that reads data from a GSD file.

import gsd.hoomd
traj = gsd.hoomd.open('trajectory.gsd', 'rb')

for frame in traj:
rdf.compute(system=frame, reset=False)
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MDAnalysis Readers

The MDAnalysis package can read many popular trajectory formats, including common output formats from
CHARMM, NAMD, LAMMPS, Gromacs, Tinker, AMBER, GAMESS, HOOMD-blue, and more.

DCD files are among the most familiar simulation outputs due to their longevity. Here, we provide an example that
reads data from a DCD file.

import MDAnalysis
reader = MDAnalysis.coordinates.DCD.DCDReader('trajectory.dcd')

for frame in reader:
rdf.compute(system=frame, reset=False)

MDTraj Readers

The MDTraj package can read many popular trajectory formats, including common output formats from AMBER,
MSMBuilder2, Protein Data Bank files, OpenMM, Tinker, Gromacs, LAMMPS, HOOMD-blue, and more.

To use data read with MDTraj in freud, a system-like object must be manually constructed because it does not have a
“frame-like” object containing information about the periodic box and particle positions (both quantities are provided
as arrays over the whole trajectory). Here, we provide an example of how to construct a system:

import mdtraj
traj = mdtraj.load_xtc('output/prd.xtc', top='output/prd.gro')

for system in zip(np.asarray(traj.unitcell_vectors), traj.xyz):
rdf.compute(system=system, reset=False)

garnett Trajectories

The garnett package can read several trajectory formats that have historically been supported by the HOOMD-blue
simulation engine, as well as other common types such as DCD and CIF. The garnett package will auto-detect sup-
ported file formats by the file extension. Here, we provide an example that reads data from a POS file.

import garnett

with garnett.read('trajectory.pos') as traj:
for frame in traj:

rdf.compute(system=frame, reset=False)

OVITO Modifiers

The OVITO Open Visualization Tool supports user-written Python modifiers. The freud package can be installed
alongside OVITO to enable user-written Python script modifiers that leverage analyses from freud. Below is an
example modifier that creates a user particle property in the OVITO pipeline for Steinhardt bond order parameters.

import freud

def modify(frame, data):
ql = freud.order.Steinhardt(l=6)
ql.compute(system=data, neighbors={'num_neighbors': 6})
data.create_user_particle_property(

(continues on next page)
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(continued from previous page)

name='ql', data_type=float, data=ql.ql)
print('Created ql property for {} particles.'.format(data.particles.count))

HOOMD-blue Snapshots

HOOMD-blue supports analyzers, callback functions that can perform analysis. Below is an example demonstrating
how to use an anlyzer to log the Steinhardt bond order parameter 𝑞6 during the simulation run.

import hoomd
from hoomd import md
import freud

hoomd.context.initialize()

# Create a 10x10x10 simple cubic lattice of particles with type name A
system = hoomd.init.create_lattice(

unitcell=hoomd.lattice.sc(a=2.0, type_name='A'), n=10)

# Specify Lennard-Jones interactions between particle pairs
nl = md.nlist.cell()
lj = md.pair.lj(r_cut=3.0, nlist=nl)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)

# Integrate at constant temperature
md.integrate.mode_standard(dt=0.005)
hoomd.md.integrate.langevin(group=hoomd.group.all(), kT=1.2, seed=4)

# Create a Steinhardt object to analyze snapshots
ql = freud.order.Steinhardt(l=6)

def compute_q6(timestep):
snap = system.take_snapshot()
ql.compute(system=snap, neighbors={'num_neighbors': 6})
return ql.order

# Register a logger that computes q6 and saves to a file
ql_logger = hoomd.analyze.log(filename='ql.dat', quantities=['q6'], period=100)
ql_logger.register_callback('q6', compute_q6)

# Run for 10,000 time steps
hoomd.run(10e3)

7.8.2 Reading Text Files

Typically, it is best to use one of the natively supported data readers described above; however it is sometimes necessary
to parse trajectory information directly from a text file. One example of a plain text format is the XYZ file format,
which can be generated and used by many tools for particle simulation and analysis, including LAMMPS and VMD.
Note that various readers do exist for XYZ files, including MDAnalysis, but in this example we read the file manually
to demonstrate how to read these inputs as plain text. Though they are easy to parse, XYZ files usually contain no
information about the system box, so this must already be known by the user. Assuming knowledge of the box used
in the simulation, a LAMMPS XYZ file could be used as follows:
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N = int(np.genfromtxt('trajectory.xyz', max_rows=1))
traj = np.genfromtxt(

'trajectory.xyz', skip_header=2,
invalid_raise=False)[:, 1:4].reshape(-1, N, 3)

box = freud.box.Box.cube(L=20)

for frame_positions in traj:
rdf.compute(system=(box, frame_positions), reset=False)

The first line is the number of particles, so we read this line and use it to determine how to reshape the contents of the
rest of the file into a NumPy array.

7.8.3 Other External Readers

For many trajectory formats, high-quality readers already exist. However sometimes these readers’ data structures
must be converted into a format understood by freud. Below, we show an example that converts the MDAnalysis box
dimensions from a matrix into a freud.box.Box. Note that MDAnalysis inputs are natively supported by freud
without this extra step. For other formats not supported by a reader listed above, a similar process can be followed.

import MDAnalysis
reader = MDAnalysis.coordinates.DCD.DCDReader('trajectory.dcd')

for frame in reader:
box = freud.box.Box.from_matrix(frame.triclinic_dimensions)
rdf.compute(system=(box, frame.positions), reset=False)

7.9 Box Module

Overview

Details

7.10 Cluster Module

Overview
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7.16 Locality Module
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Details

7.21 Development Guide

Contributions to freud are highly encouraged. The pages below offer information about how the project is structured,
the goals of the freud library, and how to contribute new modules.

7.21.1 Design Principles

Vision

The freud library is designed to be a powerful and flexible library for the analysis of simulation output. To support a
variety of analysis routines, freud places few restrictions on its components. The primary requirement for an analysis
routine in freud is that it should be substantially computationally intensive so as to require coding up in C++: all freud
code should be composed of fast C++ routines operating on systems of particles in periodic boxes. To remain
easy-to-use, all C++ modules should be wrapped in Python code so they can be easily accessed from Python scripts or
through a Python interpreter.

In order to achieve this goal, freud takes the following viewpoints:

• freud works directly with NumPy <http://www.numpy.org/>_ arrays to retain maximum flexibility. Integrations
with other tools should be performed via the common data representations of NumPy arrays.

• For ease of maintenance, freud uses Git for version control; GitHub for code hosting and issue tracking; and
the PEP 8 standard for code, stressing explicitly written code which is easy to read.

• To ensure correctness, freud employs unit testing using the Python unittest framework. In addition, freud
utilizes CircleCI for continuous integration to ensure that all of its code works correctly and that any changes or
new features do not break existing functionality.

Language choices

The freud library is written in two languages: Python and C++. C++ allows for powerful, fast code execution while
Python allows for easy, flexible use. Intel Threading Building Blocks parallelism provides further power to C++
code. The C++ code is wrapped with Cython, allowing for user interaction in Python. NumPy provides the basic data
structures in freud, which are commonly used in other Python plotting libraries and packages.

Unit Tests

All modules should include a set of unit tests which test the correct behavior of the module. These tests should be
simple and short, testing a single function each, and completing as quickly as possible (ideally < 10 sec, but times up
to a minute are acceptable if justified).
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Benchmarks

Modules can be benchmarked in the following way. The following code is an example benchmark for the freud.
density.RDF module.

1 import numpy as np
2 import freud
3 from benchmark import Benchmark
4 from benchmarker import run_benchmarks
5

6

7 class BenchmarkDensityRDF(Benchmark):
8 def __init__(self, r_max, bins, r_min):
9 self.r_max = r_max

10 self.bins = bins
11 self.r_min = r_min
12

13 def bench_setup(self, N):
14 self.box_size = self.r_max*3.1
15 np.random.seed(0)
16 self.points = np.random.random_sample((N, 3)).astype(np.float32) \
17 * self.box_size - self.box_size/2
18 self.rdf = freud.density.RDF(self.bins, self.r_max, r_min=self.r_min)
19 self.box = freud.box.Box.cube(self.box_size)
20

21 def bench_run(self, N):
22 self.rdf.compute((self.box, self.points), reset=False)
23 self.rdf.compute((self.box, self.points))
24

25

26 def run():
27 Ns = [1000, 10000]
28 r_max = 10.0
29 bins = 10
30 r_min = 0
31 number = 100
32 name = 'freud.density.RDF'
33 classobj = BenchmarkDensityRDF
34

35 return run_benchmarks(name, Ns, number, classobj,
36 r_max=r_max, bins=bins, r_min=r_min)
37

38

39 if __name__ == '__main__':
40 run()

in a file benchmark_density_RDF.py in the benchmarks directory. More examples can be found in the
benchmarks directory. The runtime of BenchmarkDensityRDF.bench_run will be timed for number of
times on the input sizes of Ns. Its runtime with respect to the number of threads will also be measured. Benchmarks
are run as a part of continuous integration, with performance comparisons between the current commit and the master
branch.
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Make Execution Explicit

While it is tempting to make your code do things “automatically”, such as have a calculate method find all _calc
methods in a class, call them, and add their returns to a dictionary to return to the user, it is preferred in freud to
execute code explicitly. This helps avoid issues with debugging and undocumented behavior:

# this is bad
class SomeFreudClass(object):

def __init__(self, **kwargs):
for key in kwargs.keys:

setattr(self, key, kwargs[key])

# this is good
class SomeOtherFreudClass(object):

def __init__(self, x=None, y=None):
self.x = x
self.y = y

Code Duplication

When possible, code should not be duplicated. However, being explicit is more important. In freud this translates to
many of the inner loops of functions being very similar:

// somewhere deep in function_a
for (int i = 0; i < n; i++)

{
vec3[float] pos_i = position[i];
for (int j = 0; j < n; j++)

{
pos_j = = position[j];
// more calls here
}

}

// somewhere deep in function_b
for (int i = 0; i < n; i++)

{
vec3[float] pos_i = position[i];
for (int j = 0; j < n; j++)

{
pos_j = = position[j];
// more calls here
}

}

While it might be possible to figure out a way to create a base C++ class all such classes inherit from, run through
positions, call a calculation, and return, this would be rather complicated. Additionally, any changes to the internals
of the code, and may result in performance penalties, difficulty in debugging, etc. As before, being explicit is better.

However, if you have a class which has a number of methods, each of which requires the calling of a function, this
function should be written as its own method (instead of being copy-pasted into each method) as is typical in object-
oriented programming.
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Python vs. Cython vs. C++

The freud library is meant to leverage the power of C++ code imbued with parallel processing power from TBB with
the ease of writing Python code. The bulk of your calculations should take place in C++, as shown in the snippet
below:

# this is bad
def badHeavyLiftingInPython(positions):

# check that positions are fine
for i, pos_i in enumerate(positions):

for j, pos_j in enumerate(positions):
if i != j:

r_ij = pos_j - pos_i
# ...
computed_array[i] += some_val

return computed_array

# this is good
def goodHeavyLiftingInCPlusPlus(positions):

# check that positions are fine
cplusplus_heavy_function(computed_array, positions, len(pos))
return computed_array

In the C++ code, implement the heavy lifting function called above from Python:

void cplusplus_heavy_function(float* computed_array,
float* positions,
int n)

{
for (int i = 0; i < n; i++)

{
for (int j = 0; j < n; j++)

{
if (i != j)

{
r_ij = pos_j - pos_i;
// ...
computed_array[i] += some_val;
}

}
}

}

Some functions may be necessary to write at the Python level due to a Python library not having an equivalent C++
library, complexity of coding, etc. In this case, the code should be written in Cython and a reasonable attempt to
optimize the code should be made.
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7.21.2 Contributing to freud

Code Conventions

Python

Python (and Cython) code in freud should follow PEP 8.

During continuous integration (CI), all Python and Cython code in freud is tested with flake8 to ensure PEP 8 com-
pliance. Additionally, all CMake code is tested using cmakelang’s cmake-format. It is strongly recommended to set
up a pre-commit hook to ensure code is compliant before pushing to the repository:

pip install -r requirements-precommit.txt
pre-commit install

To manually run pre-commit for all the files present in the repository, run the following command:

pre-commit run --all-files --show-diff-on-failure

Documentation is written in reStructuredText and generated using Sphinx. It should be written according to the Google
Python Style Guide. A few specific notes:

• The shapes of NumPy arrays should be documented as part of the type in the following manner:

points ((:math:`N_{points}`, 3) :class:`numpy.ndarray`):

• Optional arguments should be documented as such within the type after the actual type, and the default value
should be included within the description:

box (:class:`freud.box.Box`, optional): Simulation box (Default value = None).

C++

C++ code should follow the result of running clang-format-6.0 with the style specified in the file .
clang-format. Please refer to Clang Format 6 for details.

When in doubt, run clang-format -style=file FILE_WITH_YOUR_CODE in the top directory of the freud
repository. If installing clang-format is not a viable option, the check-style step of continuous integration
(CI) contains the information on the correctness of the style.

Doxygen docstrings should be used for classes, functions, etc.

Code Organization

The code in freud is a mix of Python, Cython, and C++. From a user’s perspective, methods in freud correspond
to Compute classes, which are contained in Python modules that group methods by topic. To keep modules well-
organized, freud implements the following structure:

• All C++ code is stored in the cpp folder at the root of the repository, with subdirectories corresponding to each
module (e.g. cpp/locality).

• Python code is stored in the freud folder at the root of the repository.

• C++ code is exposed to Python using Cython code contained in pxd files with the following convention:
freud/_MODULENAME.pxd (note the preceding underscore).
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• The core Cython code for modules is contained in freud/MODULENAME.pyx (no underscore).

• Generated Cython C++ code (e.g. freud/MODULENAME.cxx) should not be committed during develop-
ment. These files are generated using Cython when building from source, and are unnecessary when installing
compiled binaries.

• If a Cython module contains code that must be imported into other Cython modules (such as the freud.box.
Box class), the pyx file must be accompanied by a pxd file with the same name: freud/MODULENAME.pxd
(distinguished from pxd files used to expose C++ code by the lack of a preceding underscore). For more
information on how pxd files work, see the Cython documentation.

• All tests in freud are based on the Python standard unittest library and are contained in the tests folder.
Test files are named by the convention tests/test_MODULENAME_CLASSNAME.py.

• Benchmarks for freud are contained in the benchmarks directory and are named analogously to tests:
benchmarks/benchmark_MODULENAME_CLASSNAME.py.

Benchmarks

Benchmarking in freud is performed by running the benchmarks/benchmarker.py script. This script finds all
benchmarks (using the above naming convention) and attempts to run them. Each benchmark is defined by extending
the Benchmark class defined in benchmarks/benchmark.py, which provides the standard benchmarking util-
ities used in freud. Subclasses just need to define a few methods to parameterize the benchmark, construct the freud
object being benchmarked, and then call the relevant compute method. Rather than describing this process in detail,
we consider the benchmark for the freud.density.RDF module as an example.

1 import numpy as np
2 import freud
3 from benchmark import Benchmark
4 from benchmarker import run_benchmarks
5

6

7 class BenchmarkDensityRDF(Benchmark):
8 def __init__(self, r_max, bins, r_min):
9 self.r_max = r_max

10 self.bins = bins
11 self.r_min = r_min
12

13 def bench_setup(self, N):
14 self.box_size = self.r_max*3.1
15 np.random.seed(0)
16 self.points = np.random.random_sample((N, 3)).astype(np.float32) \
17 * self.box_size - self.box_size/2
18 self.rdf = freud.density.RDF(self.bins, self.r_max, r_min=self.r_min)
19 self.box = freud.box.Box.cube(self.box_size)
20

21 def bench_run(self, N):
22 self.rdf.compute((self.box, self.points), reset=False)
23 self.rdf.compute((self.box, self.points))
24

25

26 def run():
27 Ns = [1000, 10000]
28 r_max = 10.0
29 bins = 10
30 r_min = 0
31 number = 100

(continues on next page)
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(continued from previous page)

32 name = 'freud.density.RDF'
33 classobj = BenchmarkDensityRDF
34

35 return run_benchmarks(name, Ns, number, classobj,
36 r_max=r_max, bins=bins, r_min=r_min)
37

38

39 if __name__ == '__main__':
40 run()

The __init__ method defines basic parameters of the run, the bench_setup method is called to build up the RDF
object, and the bench_run is used to time and call compute. More examples can be found in the benchmarks
directory. The runtime of BenchmarkDensityRDF.bench_run will be timed for number of times on the input
sizes of Ns. Its runtime with respect to the number of threads will also be measured. Benchmarks are run as a part of
continuous integration, with performance comparisons between the current commit and the master branch.

Steps for Adding New Code

Once you’ve determined to add new code to freud, the first step is to create a new branch off of master. The process
of adding code differs based on whether or not you are editing an existing module in freud. Adding new methods to
an existing module in freud requires creating the new C++ files in the cpp directory, modifying the corresponding
_MODULENAME.pxd file in the freud directory, and creating a wrapper class in freud/MODULENAME.pyx. If
the new methods belong in a new module, you must create the corresponding cpp directory and the pxd and pyx
files accordingly.

In order for code to compile, it must be added to the relevant CMakeLists.txt file. New C++ files for existing
modules must be added to the corresponding cpp/MODULENAME/CMakeLists.txt file. For new modules, a
cpp/NEWMODULENAME/CMakeLists.txt file must be created, and in addition the new module must be added
to the cpp/CMakeLists.txt file in the form of both an add_subdirectory command and addition to the
libfreud library in the form of an additional source in the add_library command. Similarly, new Cython mod-
ules must be added to the appropriate list in the freud/CMakeLists.txt file depending on whether or not there
is C++ code associated with the module. Finally, you will need to import the new module in freud/__init__.py
by adding from . import MODULENAME so that your module is usable as freud.MODULENAME.

Once the code is added, appropriate tests should be added to the tests folder. Test files are named by the convention
tests/test_MODULENAME_CLASSNAME.py. The final step is updating documentation, which is contained in
rst files named with the convention doc/source/modules/MODULENAME.rst. If you have added a class to
an existing module, all you have to do is add that same class to the autosummary section of the corresponding rst
file. If you have created a new module, you will have to create the corresponding rst file with the summary section
listing classes and functions in the module followed by a more detailed description of all classes. All classes and
functions should be documented inline in the code, which allows automatic generation of the detailed section using
the automodule directive (see any of the module rst files for an example). Finally, the new file needs to be added
to doc/source/index.rst in the API section.
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7.21.3 Special Topics

Some of the most central components have a high level of abstraction. This abstraction has multiple advantages: it
dramatically simplifies the process of implementing new code, it reduces duplication throughout the code base, and
ensures that bug fixes and optimization can occur along a single path for the entire module. However, this abstraction
comes at the cost of significant complexity. This documentation should help orient developers familiarizing themselves
with these topics by providing high-level overviews of how these parts of the code are structured and how the pieces
fit together.

Memory Management

Memory handling in freud is a somewhat intricate topic. Most freud developers do not need to be aware of such
details; however, certain practices must be followed to ensure that the expected behavior is achieved. This page
provides an overview of how data should be handled in freud and how module developers should use freud’s core
classes to ensure proper memory management. A thorough description of the process is also provided for developers
who need to understand the internal logic for further development.

Note: This page specifically deals with modules primarily written in C++. These concepts do not apply to pure
Python/Cython modules.

Problem Statement

The standard structure for freud modules involves a core implementation in a C++ class wrapped in a Cython class
that owns a pointer to the C++ object. Python compute methods call through to C++ compute methods, which
perform the calculation and populate class member arrays that are then accessed via properties of the owning Cython
class. These classes are designed to be reusable, i.e. compute may be called many times on the same object with
different data, and the accessed properties will return the most current data. Users have a reasonable expectation that
if the accessed property is saved to another variable it will remain unchanged by future calls to compute or if the
originating C++ object is destructed, but a naive implementation that ensures this invariant would involve reallocating
memory on every call to compute, an unnecessarily expensive operation. Ultimately, what we want is a method that
performs the minimal number of memory allocations while allowing users to operate transparently on outputs without
worrying about whether the data will be invalidated by future operations.

ManagedArray

The freud ManagedArray template class provides a solution to this problem for arbitrary types of numerical data.
Proper usage of the class can be summarized by the following steps:

1. Declaring ManagedArray class members in C++.

2. Calling the prepare method in every compute.

3. Making the array accessible via a getter method that returns a const reference.

4. Calling make_managed_numpy_array in Cython and returning the output as a property.

Plenty of examples of following this pattern can be found throughout the codebase, but for clarity we provide a
complete description with examples below. If you are interested in more details on the internals of ManagedArray
and how it actually works, you can skip to Explaining ManagedArrays.
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Using ManagedArrays

We’ll use freud.cluster.Cluster to illustrate how the four steps above may be implemented. This class takes
in a set of points and assigns each of them to clusters, which are store in the C++ array m_cluster_idx.

Step 1 is simple: we note that m_cluster_idx is a member variable of type ManagedArray<unsigned int>.
For step 2, we look at the first few lines of Cluster::compute, where we see a call to m_cluster_idx.
prepare. This method encapsulates the core logic of ManagedArray, namely the intelligent reallocation of mem-
ory whenever other code is still accessing it. This means that, if a user saves the corresponding Python property
freud.cluster.Cluster.cluster_idx to a local variable in a script and then calls freud.cluster.
Cluster.compute, the saved variable will still reference the original data, and the new data may be accessed
again using freud.cluster.Cluster.cluster_idx.

Step 3 for the cluster indices is accomplished in the following code block:

//! Get a reference to the cluster ids.
const util::ManagedArray<unsigned int> &getClusterIdx() const
{

return m_cluster_idx;
}

The return type of this method is crucial: all such methods must return const references to the members.

The final step is accomplished on the Cython side. Here is how the cluster indices are exposed in freud.cluster.
Cluster:

@_Compute._computed_property
def cluster_idx(self):

""":math:`N_{points}` :class:`numpy.ndarray`: The cluster index for
each point."""
return freud.util.make_managed_numpy_array(

&self.thisptr.getClusterIdx(),
freud.util.arr_type_t.UNSIGNED_INT)

Essentially all the core logic is abstracted away from the user through the freud.data.
make_managed_numpy_array(), which creates a NumPy array that is a view on an existing ManagedArray.
This NumPy array will, in effect, take ownership of the data in the event that the user keeps a reference to
it and requests a recomputation. Note the signature of this function: the first argument must be a pointer
to the ManagedArray (which is why we had to return it by reference), and the second argument indicates
the type of the data (the possible types can be found in freud/util.pxd). There is one other point to
note that is not covered by the above example; if the template type of the ManagedArray is not a scalar,
you also need to provide a third argument indicating the size of this vector. The most common use-case is
for methods that return an object of type ManagedArray<vec3<float>>: in this case, we would call
make_managed_numpy_array(&GETTER_FUNC, freud.util.arr_type_t.FLOAT, 3).

Indexing ManagedArrays

With respect to indexing, the ManagedArray class behaves like any standard array-like container and can be ac-
cessed using e.g. m_cluster_idx[index]. In addition, because many calculations in freud output multidimen-
sional information, ManagedArray also supports multidimensional indexing using operator(). For example,
setting the element at second row and third column of a 2D ManagedArray array to one can be done using
array(1, 2) = 1 (indices beginning from 0). Therefore, ManagedArray objects can be used easily inside the
core C++ calculations in freud.
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Explaining ManagedArrays

We now provide a more detailed accounting of how the ManagedArray class actually works. Consider the following
block of code:

rdf = freud.density.RDF(bins=100, r_max=3)

rdf.compute(system=(box1, points1))
rdf1 = rdf.rdf

rdf2.compute(system=(box2, points2))
rdf2 = rdf.rdf

We require that rdf1 and rdf2 be distinct arrays that are only equal if the results of computing the RDF are actually
equivalent for the two systems, and we want to achieve this with the minimal number of memory allocations. In this
case, that means there are two required allocations; returning copies would double that.

To achieve this goal, ManagedArray objects store a pointer to a pointer. Multiple ManagedArray objects can
point to the same data array, and the pointers are all shared pointers to automate deletion of arrays when no ref-
erences remain. The key using the class properly is the prepare method, which checks the reference count to
determine whether it’s safe to simply zero out the existing memory or if it needs to allocate a new array. In the above
example, when compute is called a second time the rdf1 object in Python still refers to the computed data, so
prepare will detect that there are multiple (two) shared pointers pointing to the data and choose to reallocate the
class’s ManagedArray storing the RDF. By calling prepare at the top of every compute method, developers
ensure that the array used for the rest of the method has been properly zeroed out, and they do not need to worry about
whether reallocation is needed (including cases where array sizes change).

To ensure that all references to data are properly handled, some additional logic is required on the Python side as
well. The Cython make_managed_numpy_array instantiates a _ManagedArrayContainer class, which is
essentially just a container for a ManagedArray that points to the same data as the ManagedArray provided
as an argument to the function. This link is what increments the underlying shared pointer reference counter. The
make_managed_numpy_array uses the fact that a _ManagedArrayContainer can be transparently con-
verted to a NumPy array that points to the container; as a result, no data copies are made, but all NumPy arrays
effectively share ownership of the data along with the originating C++ class. If any such arrays remain in scope for
future calls to compute, prepare will recognize this and reallocate memory as needed.

Neighbor Finding

Neighbor finding is central to many methods in freud. The purpose of this page is to introduce the various C++ classes
and functions involved in the neighbor finding process. This page focuses on aspects of the neighbor finding utilities
in freud that are important for developers. As such, it assumes knowledge on the level of Finding Neighbors and Pair
Computations, so please familiarize yourself with the contents of those pages before proceeding.

There are two primary use-cases for the neighbor finding code in freud. One is to directly expose this functionality
to the user, via the NeighborQuery abstract class and its subclasses. The second it to enable looping over nearest
neighbors (as defined by arbitrary query arguments or a precomputed NeighborList) inside of compute methods
defined in C++. To support both of these use-cases, freud defines how to find neighbors inside iterator classes, which
can be naturally looped over in either case. In this page, we first discuss these iterators and how they are structured
with respect to the locality::NeighborQuery C++ class. We then discuss the utility functions built around
this class to enable easier C++ computations, at which point we also discuss how NeighborList objects fit into
this framework.
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Per-Point Iterators and the NeighborQuery class

The lowest-level unit of the neighbor finding infrastructure in freud is the locality::
NeighborPerPointIterator. This class defines an abstract interface for all neighbor iteration in freud,
an interface essentially composed of the next and end methods. Given an instance of this class, these two methods
provide the means for client code to get the next neighbor in the iteration until there are no further neighbors. Calls to
next produces instances of locality::NeighborBond, a simple data class that contains the core information
defining a bond (a pair of points, a distance, and any useful ancillary information).

The rationale for making per-point iteration the central element is twofold. The first is conceptual: all logic for finding
neighbors is naturally reducible to a set of conditions on the neighbors of each query point. The second is more
practical: since finding neighbors for each point must be sequential in many cases (such as nearest neighbor queries),
per-point iteration is the smallest logical unit that can be parallelized.

Instances of locality::NeighborPerPointIterator should not be constructed directly; instead, they
should be constructed via the locality::NeighborQuery::querySingle method. The locality:
:NeighborQuery class is an abstract data type that defines an interface for any method implemented for
finding neighbors. All subclasses must implement the querySingle method, which should return a sub-
class of locality::NeighborPerPointIterator. For instance, the locality::AABBQuery class im-
plements querySingle, which returns an instance of the locality::AABBIterator subclass. In gen-
eral, different NeighborQuery subclasses will need to implement separate per-point iterators for each query
mode; for locality::AABBQuery, these are the locality::AABBQueryIterator and the locality::
AABBQueryBallIterator, which encode the logic for nearest neighbor and ball queries, respectively.

Although the querySingle method is what subclasses should implement, the primary interface to
NeighborQuery subclasses is the query method, which accepts an arbitrary set of query points and query
arguments and simply generates a locality::NeighborQueryIterator object. The locality::
NeighborQueryIterator class is an intermediary that allows lazy generation of neighbors. It essentially func-
tions as the container for a set of points, query points, and query arguments; once iteration of this object begins, it
produces NeighborPerPointIterator objects on demand. This mode of operation also enables the generator
approach to looping over neighbors in Python, since iterating in Python corresponds directly to calling next on the
underlying NeighborQueryIterator.

There is one conceptual complexity associated with this class that is important to understand. Since all of the logic for
finding neighbors is contained in the per-point iterator classes, the NeighborQueryIterator actually retains a
reference to the constructing NeighborQuery object so that it can call querySingle for each point. This bidirec-
tionally linked structure enables encapsulation of the neighbor finding logic while also supporting easily parallelization
(via parallel calls to querySingle). Additionally, this structure makes it natural to generate NeighborList ob-
jects.

NeighborLists

The NeighborList class represents a static list of neighbor pairs. The results of any query can be converted to a
NeighborList by calling the toNeighborList method of the NeighborQueryIterator, another reason
why the iterator class logic is separated from the NeighborQuery object: it allows generation of a NeighborList
from – and more generally, independent operation on – the result of a query. The NeighborList is simply imple-
mented as a collection of raw arrays, one of which holds pairs of neighbors. The others hold any additional information
associated with each bond, such as distances or weights.

By definition, the bonds in a NeighborList are stored in the form (query_point, point) (i.e. this is how
the underlying array is indexed) and ordered by query_point. This ordering makes the structure amenable to a fast
binary search algorithm. Looping over neighbors of a given query_point is then simply a matter of finding the
first index in the list where that query_point appears and then iterating until the query_point index in the list
no longer matches the one under consideration.
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Computing With Neighbors

One of the most common operations in freud is performing some computation over all neighbor-bonds in the sys-
tem. Users have multiple ways of specifying neighbors (using query arguments or by a NeighborList), so freud
provides some utility functions to abstract the process of looping over neighbors. These functions are defined in
locality/NeighborComputeFunctional.h; the two most important ones are loopOverNeighbors and
loopOverNeighborsIterator. Compute functions that perform neighbor computations typically accept a
NeighborQuery, a QueryArgs, and a NeighborList object. These objects can then be passed to either of
the utility functions, which loop over the NeighborList if it was provided (if no NeighborList is provided by
the Python user, a NULL pointer is passed through), and if not, perform a query on the NeighborQuery object using
the provided QueryArgs to generate the required neighbors. The actual computation should be encapsulated as a
lambda function that is passed as an argument to these utilities.

The distinction between the two utility functions lies in the signature of the accepted lambda functions, which enables a
slightly different form of computation. The default loopOverNeighbors function does exactly what is described
above, namely it calls the provided compute function for every single bond. However, some computations require
some additional code to be executed for each query_point, such as some sort of normalization. To enable this
mode of operation, the loopOverNeighborsIterator method instead requires a lambda function that accepts
two arguments, the query_point index and a NeighborPerPointIterator. This way, the client code can
loop over the neighbors of a given query_point and perform the needed computation, then execute additional code
(which may optionally depend on the index of the query_point, e.g. to update a specific array index).

Default Systems

There is one important implementation detail to note. The user is permitted to simply provide a set of points rather
than a NeighborQuery object on the Python side (i.e. any valid argument to from_system()), but we need a
natural way to mirror this in C++, ideally without too many method overloads. To implement this, we provide the
RawPoints C++ class and its Python _RawPoints mirror, which is essentially a plain container for a box and a set
of query points. This object inherits from NeighborQuery, allowing it to be passed directly into the C++ compute
methods.

However, neighbor computations still need to know how to find neighbors. In this case, they must construct a
NeighborQuery object capable of neighbor finding and then use the provided query arguments to find neighbors.
To enable this calculation, the RawPoints class implements a query method that simply constructs an AABBQuery
internally and queries it for neighbors.

Default NeighborLists

Some compute methods are actually computations that produce quantities per bond. One example is
the SolidLiquid order parameter, which computes an order parameter value for each bond. The
NeighborComputeFunctional.h file implements a makeDefaultNList function that supports this calcu-
lation by creating a NeighborList object from whatever inputs are provided on demand.
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Histograms

Histograms are a common type of calculation implemented in freud because custom histograms are hard to compute
efficiently in pure Python. The C++ Histogram class support weighted N-dimensional histograms with different
spacings in each dimension. The key to this flexibility is the Axis class, which defines the range spacing along a
single axis; an N-dimensional Histogram is composed of a sequence of N Axis objects. Binning values into the
histogram is performed by binning along each axis. The standard RegularAxis subclass of Axis defines an evenly
spaced axis with bin centers defined as the center of each bin; additional subclasses may be defined to add different
spacing if desired.

Multithreading is achieved through the ThreadLocalHistogram class, which is a simple wrapper around
the Histogram that creates an equivalent histogram on each thread. The standard pattern for parallel his-
togramming is to generate a ThreadLocalHistogram and add data into it, then call the Histogram::
reduceOverThreads method to accumulate these data into a single histogram. In case any additional post-
processing is required per bin, it can also be executed in parallel by providing it as a lambda function to Histogram:
:reduceOverThreadsPerBin.

Computing with Histograms

The Histogram class is designed as a data structure for the histogram. Most histogram computations in freud
involve standard neighbor finding to get bonds, followed by binning some function of these bonds into a histogram.
Examples include RDFs (binning bond distances), PMFTs (binning bonds by the different vector components of the
bond), and bond order diagrams (binning bond angles). An important distinction between histogram computations
and most others is that histograms naturally support an accumulation of information over multiple frames of data, an
operation that is ill-defined for many other computations. As a result, histogram computations also need to implement
some boilerplate for handling accumulating and averaging data over multiple frames.

The details of these computations are encapsulated by the BondComputeHistogram class, which contains a his-
togram, provides accessors to standard histogram properties like bin counts and axis sizes, and has a generic accumu-
lation method that accepts a lambda compute function. This signature is very similar to the utility functions for looping
over neighbors, and in fact the function is transparently forwarded to locality::loopOverNeighbors. Any
compute that matches this pattern should inherit from the BondComputeHistogram class and must implement
an accumulate method to perform the computation and a reduce to reduce thread local histograms into a single
histogram..

7.21.4 Making freud Releases

Release Process

Documented below are the steps needed to make a new release of freud.

1. Create a release branch, numbered according to Sematic Versioning:

git checkout -b release/vX.Y.Z
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Changelog

2. Review headings (Added, Changed, Fixed, Deprecated, Removed) and ensure consistent formatting.

3. Update the release version and release date from next to vX.Y.Z - YYYY-MM-DD.

Submodules

4. Update git submodules (optional, but should be done regularly).

Code Formatting

5. Reformat C++ code with clang-format 6.0:

clang-format -style=file cpp/**/*

Contributors

6. Update the contributor list:

git shortlog -sne > contributors.txt

Bump version

7. Commit previous changes before running bumpversion.

8. Use the bumpversion package to increase the version number and automatically generate a git tag:

bumpversion patch # for X.Y.Z
bumpversion minor # for X.Y
bumpversion major # for X

9. Push the release branch to the remote:

git push -u origin release/vX.Y.Z

10. Ensure that ReadTheDocs and continuous integration pass (you will need to manually enable the branch on
ReadTheDocs’ web interface to test it). Then push the tag:

git push --tags
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Automatic Builds

11. Pushing the tag will cause CircleCI to create a release for PyPI automatically (see automation in .circleci/
config.yml). Make sure this succeeds – it takes a while to run.

12. Create a pull request and merge the release branch into the master branch. Delete the release branch on
ReadTheDocs’ web interface, since there is now a tagged version.

13. The conda-forge autotick bot should discover that the PyPI source distribution has changed, and will create a
pull request to the conda-forge feedstock. This pull request may take a few hours to appear. If other changes
are needed in the conda-forge recipe (e.g. new dependencies), follow the conda-forge documentation to create a
pull request from your own fork of the feedstock. Merge the pull request after all continuous integration passes
to trigger release builds for conda-forge.

Release Announcement

14. Verify that ReadTheDocs, PyPI, and conda-forge have been updated to the newest version.

15. Send a release notification via the freud-users group. Follow the template of previous release notifications.

7.22 How to cite freud

Please acknowledge the use of this software within the body of your publication for example by copying or adapting
the following formulation:

Data analysis for this publication utilized the freud library[1].

[1] V. Ramasubramani, B. D. Dice, E. S. Harper, M. P. Spellings, J. A. Anderson, and S. C. Glotzer.
freud: A Software Suite for High Throughput Analysis of Particle Simulation Data. Computer Physics
Communications Volume 254, September 2020, 107275. doi:10.1016/j.cpc.2020.107275.

The paper is available online from Computer Physics Communications and a pre-print is freely available on arXiv.

To cite this reference, you can use the following BibTeX entry:

@article{freud2020,
title = {freud: A Software Suite for High Throughput

Analysis of Particle Simulation Data},
author = {Vyas Ramasubramani and

Bradley D. Dice and
Eric S. Harper and
Matthew P. Spellings and
Joshua A. Anderson and
Sharon C. Glotzer},

journal = {Computer Physics Communications},
volume = {254},
pages = {107275},
year = {2020},
issn = {0010-4655},
doi = {https://doi.org/10.1016/j.cpc.2020.107275},
url = {http://www.sciencedirect.com/science/article/pii/S0010465520300916},
keywords = {Simulation analysis, Molecular dynamics,

Monte Carlo, Computational materials science},
}
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Optionally, publications using freud in the context of machine learning or data visualization may also wish to cite this
reference.

[2] B. D. Dice, V. Ramasubramani, E. S. Harper, M. P. Spellings, J. A. Anderson, and S. C. Glotzer.
Analyzing Particle Systems for Machine Learning and Data Visualization with freud. Proceedings of the
18th Python in Science Conference, 2019, 27-33. doi:10.25080/Majora-7ddc1dd1-004.

The paper is freely available from the SciPy Conference website.

To cite this reference, you can use the following BibTeX entry:

@InProceedings{freud2019,
title = {Analyzing Particle Systems for Machine Learning

and Data Visualization with freud},
author = {Bradley D. Dice and

Vyas Ramasubramani and
Eric S. Harper and
Matthew P. Spellings and
Joshua A. Anderson and
Sharon C. Glotzer },

booktitle = {Proceedings of the 18th Python in Science Conference},
pages = {27-33},
year = {2019},
editor = {Chris Calloway and David Lippa and Dillon Niederhut and David Shupe},
doi = {https://doi.org/10.25080/Majora-7ddc1dd1-004},
url = {http://conference.scipy.org/proceedings/scipy2019/bradley_dice.html}

}
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7.24 License

BSD 3-Clause License for freud

Copyright (c) 2010-2020 The Regents of the University of Michigan
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR

(continues on next page)
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(continued from previous page)

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7.25 Credits

7.25.1 freud Developers

The following people contributed to the development of freud.

Vyas Ramasubramani - Lead developer

• Ensured PEP8 compliance.

• Added CircleCI continuous integration support.

• Create environment module and refactored order module.

• Rewrote most of freud docs, including order, density, and environment modules.

• Fixed nematic order parameter.

• Add properties for accessing class members.

• Various minor bug fixes.

• Refactored PMFT code.

• Refactored Steinhardt order parameter code.

• Wrote numerous examples of freud usage.

• Rewrote most of freud tests.

• Replaced CMake-based installation with setup.py using Cython.

• Add code coverage metrics.

• Added support for installing from PyPI, including ensuring that NumPy is installed.

• Converted all docstrings to Google format, fixed various incorrect docs.

• Debugged and added rotational autocorrelation code.

• Added MSD module.

• Wrote NeighborQuery, _QueryArgs, NeighborQueryResult classes.

• Wrote neighbor iterator infrastructure.

• Wrote PairCompute and SpatialHistogram parent classes.

• Wrote ManagedArray class.

• Wrote C++ histogram-related classes.

• Initial design of freud 2.0 API (NeighborQuery objects, neighbor computations, histograms).

• Standardized neighbor API in Python to use dictionaries of arguments or NeighborList objects for all pair
computations.
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• Standardized all attribute access into C++ with Python properties.

• Standardized variable naming of points/query_points across all of freud.

• Standardized vector directionality in computes.

• Enabled usage of quaternions in place of angles for orientations in 2D PMFT calculations.

• Wrote new freud 2.0 compute APIs based on neighbor_query objects and neighbors as either dictionaries or
NeighborLists.

• Rewrote MatchEnv code to fit freud 2.0 API, splitting it into 3 separate calculations and rewriting internals using
NeighborQuery objects.

• Wrote tutorial and reference sections of documentation.

• Unified util and common packages.

• Rewrote all docstrings in the package for freud 2.0.

• Changed Cubatic to use Mersenne Twisters for rng.

• Moved all citations into Bibtex format.

• Created data module.

• Standardized PMFT normalization.

• Enabled optional normalization of RDF.

• Changed correlation function to properly take the complex conjugate of inputs.

• Wrote developer documentation for version 2.0.

• Fixed handling of 2D systems from various data sources.

• Fixed usage of query orientations in PMFTXY, PMFTXYT and PMFTXYZ when points and query points are
not identical.

• Refactored and standardized PMFT tests.

• Rewrote build system to use scikit-build.

• Added support for pre-commit hooks.

Bradley Dice - Lead developer

• Cleaned up various docstrings.

• Fixed bugs in HexOrderParameter.

• Cleaned up testing code.

• Added bumpversion support.

• Reduced all compile warnings.

• Added Python interface for box periodicity.

• Added Voronoi support for neighbor lists across periodic boundaries.

• Added Voronoi weights for 3D.

• Added Voronoi cell volume computation.

• Incorporated internal BiMap class for Boost removal.

• Wrote numerous examples of freud usage.

• Added some freud tests.
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• Added ReadTheDocs support.

• Rewrote interface module into pure Cython.

• Added box duck-typing.

• Removed nose from unit testing.

• Use lambda function for parallelizing CorrelationFunction with TBB.

• Finalized boost removal.

• Wrote AABBQuery class.

• Consolidated cluster module functionality.

• Rewrote SolidLiquid order parameter class.

• Updated AngularSeparation class.

• Rewrote Voronoi implementation to leverage voro++.

• Implemented Voronoi bond weighting to enable Minkowski structure metrics.

• Refactored methods in Box and PeriodicBuffer for v2.0.

• Added checks to C++ for 2D boxes where required.

• Refactored cluster module.

• Standardized vector directionality in computes.

• NeighborQuery support to ClusterProperties, GaussianDensity, Voronoi, PeriodicBuffer, Interface.

• Standardized APIs for order parameters.

• Added radius of gyration to ClusterProperties.

• Improved Voronoi plotting code.

• Corrected number of points/query points in LocalDensity.

• Made PeriodicBuffer inherit from _Compute.

• Removed cudacpu and HOOMDMath includes.

• Added plotting functionality for Box and NeighborQuery objects.

• Added support for reading system data directly from MDAnalysis, garnett, gsd, HOOMD-blue, and OVITO.

• Revised tutorials and documentation on data inputs.

• Updated MSD to perform accumulation with compute(..., reset=False).

• Added test PyPI support to continuous integration.

• Added continuous integration to freud-examples.

• Implemented periodic center of mass computations in C++.

• Revised docs about query modes.

• Implemented smarter heuristics in Voronoi for voro++ block sizes, resulting in significant performance gains for
large systems.

• Corrected calculation of neighbor distances in the Voronoi NeighborList.

• Added finite tolerance to ensure stability of 2D Voronoi NeighborList computations.

• Improved stability of Histogram bin calculations.
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• Improved error handling of Cubatic input parameters.

• Added 2D Minkowski Structure Metrics to Hexatic, enabled by using weighted=True along with a Voronoi
NeighborList.

• Worked with Tommy Waltmann to add the SphereVoxelization feature.

• Fixed GaussianDensity normalization in 2D systems.

• Prevented GaussianDensity from computing 3D systems after it has computed 2D systems.

• Contributed code, design, and testing for DiffractionPattern class.

• Fixed Hexatic order parameter (unweighted) to normalize by number of neighbors instead of the symmetry
order k.

• Added num_query_points and num_points attributes to NeighborList class.

• Added scikit-build support for Windows.

Eric Harper, University of Michigan - Former lead developer

• Added TBB parallelism.

• Wrote PMFT module.

• Added NearestNeighbors (since removed).

• Wrote RDF.

• Added bonding module (since removed).

• Added cubatic order parameter.

• Added hexatic order parameter.

• Added Pairing2D (since removed).

• Created common array conversion logic.

Joshua A. Anderson, University of Michigan - Creator and former lead developer

• Initial design and implementation.

• Wrote LinkCell and IteratorLinkCell.

• Wrote GaussianDensity, LocalDensity.

• Added parallel module.

• Added indexing modules (since removed).

• Wrote Cluster and ClusterProperties modules.

Matthew Spellings - Former lead developer

• Added generic neighbor list.

• Enabled neighbor list usage across freud modules.

• Added correlation functions.

• Added LocalDescriptors class.

• Added interface module.

Erin Teich

• Wrote environment matching (MatchEnv) class.

• Wrote BondOrder class (with Julia Dshemuchadse).
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• Wrote AngularSeparation class (with Andrew Karas).

• Contributed to LocalQl development.

• Wrote LocalBondProjection class.

M. Eric Irrgang

• Authored kspace module (since removed).

• Fixed numerous bugs.

• Contributed to freud.shape (since removed).

Chrisy Du

• Authored Steinhardt order parameter classes.

• Fixed support for triclinic boxes.

Antonio Osorio

• Developed TrajectoryXML class.

• Various bug fixes.

• OpenMP support.

Richmond Newman

• Developed the freud box.

• Solid liquid order parameter.

Carl Simon Adorf

• Developed the Python box module.

Jens Glaser

• Wrote kspace front-end (since removed).

• Modified kspace module (since removed).

• Wrote Nematic order parameter class.

Benjamin Schultz

• Wrote Voronoi class.

• Fix normalization in GaussianDensity.

• Bug fixes in shape module (since removed).

Bryan VanSaders

• Make Cython catch C++ exceptions.

• Add shiftvec option to PMFT.

Ryan Marson

• Various GaussianDensity bugfixes.

Yina Geng

• Co-wrote Voronoi neighbor list module.

• Add properties for accessing class members.

Carolyn Phillips
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• Initial design and implementation.

• Package name.

Ben Swerdlow

• Documentation and installation improvements.

James Antonaglia

• Added number of neighbors as an argument to HexOrderParameter.

• Bugfixes.

• Analysis of deprecated kspace module.

Mayank Agrawal

• Co-wrote Voronoi neighbor list module.

William Zygmunt

• Helped with Boost removal.

Greg van Anders

• Bugfixes for CMake and SSE2 installation instructions.

James Proctor

• Cythonization of the cluster module.

Rose Cersonsky

• Enabled TBB-parallelism in density module.

• Fixed how C++ arrays were pulled into Cython.

Wenbo Shen

• Translational order parameter.

Andrew Karas

• Angular separation.

• Wrote reference implementation for rotational autocorrelation.

Paul Dodd

• Fixed CorrelationFunction namespace, added ComputeOCF class for TBB parallelization.

Tim Moore

• Added optional rmin argument to density.RDF.

• Enabled NeighborList indexing.

Alex Dutton

• BiMap class for MatchEnv.

Matthew Palathingal

• Replaced use of boost shared arrays with shared ptr in Cython.

• Helped incorporate BiMap class into MatchEnv.

Kelly Wang

• Enabled NeighborList indexing.
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• Added methods compute_distances and compute_all_distances to Box.

• Added method crop to Box.

Yezhi Jin

• Added support for 2D arrays in the Python interface to Box functions.

• Rewrote Voronoi implementation to leverage voro++.

• Implemented Voronoi bond weighting to enable Minkowski structure metrics.

• Contributed code, design, and testing for DiffractionPattern class.

Brandon Butler

• Rewrote Steinhardt order parameter.

Jin Soo Ihm

• Added benchmarks.

• Contributed to NeighborQuery classes.

• Refactored C++ to perform neighbor queries on-the-fly.

• Added plotting functions to analysis classes.

• Wrote RawPoints class.

• Created Compute parent class with decorators to ensure properties have been computed.

• Updated common array conversion logic.

• Added many validation tests.

Mike Henry

• Fixed syntax in freud-examples notebooks for v2.0.

• Updated documentation links

Michael Stryk

• Added short examples into Cluster, Density, Environment, and Order Modules.

Tommy Waltmann

• Worked with Bradley Dice to add the SphereVoxelization feature.

• Contributed code, design, and testing for DiffractionPattern class.

Maya Martirossyan

• Added test for Steinhardt for particles without neighbors.

Pavel Buslaev

• Added values argument to compute method of GaussianDensity class.
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7.25.2 Source code

Eigen (http://eigen.tuxfamily.org) is included as a git submodule in freud. Eigen is made available under the Mozilla
Public License v2.0 (http://mozilla.org/MPL/2.0/). Its linear algebra routines are used for various tasks including the
computation of eigenvalues and eigenvectors.

fsph (https://github.com/glotzerlab/fsph) is included as a git submodule in freud. It is used for the calculation of
spherical harmonics. fsph is made available under the MIT license:

Copyright (c) 2016 The Regents of the University of Michigan

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

HOOMD-blue (https://github.com/glotzerlab/hoomd-blue) is the original source of some algorithms and tools for
vector math implemented in freud. HOOMD-blue is made available under the BSD 3-Clause license:

BSD 3-Clause License for HOOMD-blue

Copyright (c) 2009-2019 The Regents of the University of Michigan All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(continues on next page)
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(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

voro++ (https://github.com/chr1shr/voro) is included as a git submodule in freud. It is used for computing Voronoi
diagrams. voro++ is made available under the following license:

Voro++ Copyright (c) 2008, The Regents of the University of California, through
Lawrence Berkeley National Laboratory (subject to receipt of any required
approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National
Laboratory, without imposing a separate written license agreement for such
Enhancements, then you hereby grant the following license: a non-exclusive,
royalty-free perpetual license to install, use, modify, prepare derivative
works, incorporate into other computer software, distribute, and sublicense
such enhancements or derivative works thereof, in binary and source code form.
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