

freud documentation

[image: DOI] [https://doi.org/10.5281/zenodo.166564]
[image: Anaconda-Server] [https://anaconda.org/conda-forge/freud]
[image: Binder] [https://mybinder.org:/repo/harperic/freud-examples]
[image: ReadTheDocs] [https://freud.readthedocs.io/en/latest/?badge=latest]
[image: Codecov] [https://codecov.io/bb/glotzer/freud]

“Neurosis is the inability to tolerate ambiguity” - Sigmund Freud

Welcome to the documentation for freud, a Python package for analyzing particle simulation trajectories of periodic systems.
The library contains a diverse array of analysis routines designed for molecular dynamics and Monte Carlo simulation trajectories.
Since any scientific investigation is likely to benefit from a range of analyses, freud is designed to work as part of a larger analysis pipeline.
In order to maximize its interoperability with other systems, freud works with and returns NumPy [http://www.numpy.org/] arrays.

Installing freud

The recommended method of installing freud is using conda [https://conda.io/docs/] through the conda-forge channel [https://conda-forge.org/].
First download and install miniconda [https://conda.io/miniconda.html] following conda’s instructions [https://conda.io/docs/user-guide/install/index.html].
Then, install freud from conda-forge:

$ conda install -c conda-forge freud

Alternatively, freud can be installed directly from source.

$ git clone https://bitbucket.org/glotzer/freud.git
$ cd freud
$ python setup.py install

Contents

	Installation
	Installing freud

	Unit Tests

	Documentation

	Examples
	Key concepts

	Module Examples

	Modules
	Bond Module

	Box Module

	Cluster Module

	Density Module

	Environment Module

	Index Module

	Interface Module

	Locality Module

	Order Module

	Parallel Module

	PMFT Module

	Voronoi Module

	Development Guide
	Design Principles

	Source Code Conventions

	How to Add New Code

	References and Citations

	License

	Credits
	freud Developers

	Source code

Support and Contribution

Please visit our repository on Bitbucket [https://bitbucket.org/glotzer/freud] for the library source code.
Any issues or bugs may be reported at our issue tracker [https://bitbucket.org/glotzer/freud/issues], while questions and discussion can be directed to our forum [https://groups.google.com/forum/#!forum/freud-users].
All contributions to freud are welcomed via pull requests!
Please see the development guide for more information on requirements for new code.

Indices and tables

	Index

	Module Index

	Search Page

Installation

Installing freud

You can either install freud via conda [http://conda.pydata.org/docs/] or compile it from source.

Install via conda

The code below will install freud from conda-forge.

conda install -c conda-forge freud

Install via pip

The code below will install freud from PyPI.

pip install freud-analysis

Compile from source

The following are required for installing freud:

	Python [https://www.python.org/] (2.7, 3.5, 3.6)

	NumPy [http://www.numpy.org/]

	Intel Threading Building Blocks [https://www.threadingbuildingblocks.org/] (TBB)

The following are optional for installing freud:

	Cython [http://cython.org/]: The freud repository contains Cython-generated *.cpp files in the freud/ directory that can be used directly. However, Cython is necessary if you wish to recompile these files.

The code that follows builds freud and installs it for all users (append –user if you wish to install it to your user site directory):

git clone --recurse-submodules https://bitbucket.org/glotzer/freud.git
cd freud
python setup.py install

You can also build freud in place so that you can run from within the folder:

Run tests from the tests directory
python setup.py build_ext --inplace

Building freud in place has certain advantages, since it does not affect your Python behavior except within the freud directory itself (where freud can be imported after building).
Additionally, due to limitations inherent to the distutils/setuptools infrastructure, building extension modules can only be parallelized using the build_ext subcommand of setup.py, not with install.
As a result, it will be faster to manually run build_ext and then install (which normally calls build_ext under the hood anyway) the built packages.
In general, the following options are available for setup.py in addition to the standard setuptools options (notes are included to indicate which options are only available for specific subcommands such as build_ext):

	--PRINT-WARNINGS

	Specify whether or not to print compilation warnings resulting from the build even if the build succeeds with no errors.

	--ENABLE-CYTHON

	Rebuild the Cython-generated C++ files.
If there are any unexpected issues with compiling the C++ shipped with the build, using this flag may help.
It is also necessary any time modifications are made to the Cython files.

	-j

	Compile in parallel.
This affects both the generation of C++ files from Cython files and the subsequent compilation of the source files.
In the latter case, this option controls the number of Python modules that will be compiled in parallel.

	--TBB-ROOT

	The root directory where TBB is installed.
Useful if TBB is installed in a non-standard location or cannot be located by Python for some other reason.
Note that this information can also be provided using the environment variable TBB_ROOT.
The options –TBB-INCLUDE and –TBB-LINK will take precedence over –TBB-ROOT if both are specified.

	--TBB-INCLUDE

	The directory where the TBB headers (e.g. tbb.h) are located.
Useful if TBB is installed in a non-standard location or cannot be located by Python for some other reason.
Note that this information can also be provided using the environment variable TBB_ROOT.
The options –TBB-INCLUDE and –TBB-LINK will take precedence over –TBB-ROOT if both are specified.

	--TBB-LINK

	The directory where the TBB shared library (e.g. libtbb.so or libtbb.dylib) is located.
Useful if TBB is installed in a non-standard location or cannot be located by Python for some other reason.
Note that this information can also be provided using the environment variable TBB_ROOT.
The options –TBB-INCLUDE and –TBB-LINK will take precedence over –TBB-ROOT if both are specified.

The following additional arguments are primarily useful for developers:

	--COVERAGE

	Build the Cython files with coveragerc support to check unit test coverage.

	--NTHREAD

	Specify the number of threads to allocate to compiling each module.
This option is primarily useful for rapid development, particularly when all changes are in one module.
While the -j option will not help parallelize this case, this option allows compilation of multiple source files belonging to the same module in parallel.

Note

freud makes use of submodules. If you ever wish to manually update these, you can execute:

git submodule update --init

Unit Tests

The unit tests for freud are included in the repository and are configured to be run using the Python unittest [https://docs.python.org/3.6/library/unittest.html#module-unittest] library:

Run tests from the tests directory
cd tests
python -m unittest discover .

Note that because freud is designed to require installation to run (i.e. it cannot be run directly out of the build directory), importing freud from the root of the repository will fail because it will try and import the package folder.
As a result, unit tests must be run from outside the root directory if you wish to test the installed version of freud.
If you want to run tests within the root directory, you can instead build freud in place:

Run tests from the tests directory
python setup.py build_ext --inplace

This build will place the necessary files alongside the freud source files so that freud can be imported from the root of the repository.

Documentation

The documentation for freud is hosted online at ReadTheDocs [https://freud.readthedocs.io/], but you may also build the documentation yourself:

Building the documentation

The following are required for building freud documentation:

	Sphinx [http://www.sphinx-doc.org/]

You can install sphinx using conda

conda install sphinx

or from PyPi

pip install sphinx

To build the documentation, run the following commands in the source directory:

cd doc
make html
Then open build/html/index.html

To build a PDF of the documentation (requires LaTeX and/or PDFLaTeX):

cd doc
make latexpdf
Then open build/latex/freud.pdf

Examples

Examples are provided as Jupyter [https://jupyter.org/] notebooks in a separate
freud-examples [https://bitbucket.org/glotzer/freud-examples] repository.
These notebooks may be launched interactively on Binder [https://mybinder.org/v2/gh/glotzerlab/freud-examples/master?filepath=index.ipynb]
or downloaded and run on your own system.
Visualization of data is done via Matplotlib [https://matplotlib.org/] [Matplotlib] and Bokeh [https://bokeh.pydata.org/] [Bokeh].

Key concepts

There are a few critical concepts, algorithms, and data structures that are central to all of freud.
The box module defines the concept of a periodic simulation box, and the locality module defines methods for finding nearest neighbors for particles.
Since both of these are used throughout freud, we recommend familiarizing yourself with these before delving too deep into the workings of specific freud modules.

Examples

	Box

	ParticleBuffer - Unit Cell RDF

	LinkCell

	Nearest Neighbors

Module Examples

The remaining examples go into greater detail on the functionality of specific modules, showing how they can be used to perform specific types of analyses of simulations.

Examples

	Cluster

	Density - ComplexCF

	FloatCF

	GaussianDensity

	LocalDensity

	RDF: Accumulating g(r) for a Fluid

	RDF: Choosing Bin Widths

	AngularSeparation

	BondOrder

	LocalDescriptors: Steinhardt Order Parameters

	MatchEnv

	Pairing2D

	Interface

	Hexatic Order Parameter

	NematicOrderParameter

	LocalQl, LocalWl

	PMFTXY2D

	Shifting Example

	Voronoi

Box

The goal of freud is to perform generic analyses of particle
simulations. Such simulations are always conducted within some region
representing physical space; in freud, these regions are known as
simulation boxes, or simply boxes. An important characteristic of
many simulations is that the simulation box is periodic, i.e.
particles can travel and interact across system boundaries (for more
information, see the Wikipedia
page [https://en.wikipedia.org/wiki/Periodic_boundary_conditions]).
Simulations frequently use periodic boundary conditions to effectively
simulate infinite systems without actually having to include an infinite
number of particles. In such systems, a box in N dimensions can be
represented by N linearly independent vectors.

The Box class provides the standard API for such simulation boxes
throughout freud. The class represents some 2- or 3-dimensional
region of space, and it provides utility functions for interacting with
this space, including the ability to wrap vectors outside this box into
the box according to periodic boundary conditions. Boxes are represented
according to the HOOMD-blue
convention [https://hoomd-blue.readthedocs.io/en/stable/box.html] for
boxes. According to this convention, a 3D (2D) simulation box is fully
defined by 3 (2) linearly independent vectors, which are represented by
3 (2) characteristic lengths and 3 (1) tilt factors indicating how these
vectors are angled with respect to one another. With this convention, a
generic box is represented by the following \(3\times3\) matrix:

\[\begin{split}\left(
 \begin{array}{ccc}
 L_x & xy \times L_x & xz \times L_z\\
 0 & L_y & yz \times L_z\\
 0 & 0 & L_z\\
 \end{array}
\right)\end{split}\]

where \(xy\), \(xz\), and \(yz\) are the tilt factors. Note
that this convention imposes the requirement that the box vectors form a
right-handed coordinate system, which manifests itself in the form of an
upper (rather than lower) triangular box matrix.

In this notebook, we demonstrate the basic features of the Box
class, particularly the facility for wrapping particles back into the
box under periodic boundary conditions. For more information, see the
freud.box
documentation [https://freud.readthedocs.io/en/latest/box.html].

Box Creation

There are many ways to construct a box. We demonstrate all of these
below, with some discussion of when they might be useful.

Default (full) API

Boxes may be constructed explicitly using all arguments. Such
construction is useful when performing ad hoc analyses involving
custom boxes. In general, boxes are assumed to be 3D and
orthorhombic [https://en.wikipedia.org/wiki/Orthorhombic_crystal_system]
unless otherwise specified.

In [1]:

import freud.box

All of the below examples are valid boxes.
box = freud.box.Box(Lx=5, Ly=6, Lz=7, xy=0.5, xz=0.6, yz=0.7, is2D=False)
box = freud.box.Box(1, 3, 2, 0.3, 0.9)
box = freud.box.Box(5, 6, 7)
box = freud.box.Box(5, 6, is2D=True)
box = freud.box.Box(5, 6, xy=0.5, is2D=True)

From a box object

The simplest case is simply constructing one freud box from another.

Note that all forms of creating boxes aside from the explicit method
above use methods defined within the Box class rather than attempting to
overload the constructor itself.

In [2]:

box = freud.box.Box(1, 2, 3)
box2 = freud.box.Box.from_box(box)
print("The original box: \n\t{}".format(box))
print("The copied box: \n\t{}\n".format(box2))

Boxes are always copied by value, not by reference
box.Lx = 5
print("The original box is modified: \n\t{}".format(box))
print("The copied box is not: \n\t{}\n".format(box2))

Note, however, that box assignment creates a new object that
still points to the original box object, so modifications to
one are visible on the other.
box3 = box2
print("The new copy: \n\t{}".format(box3))
box2.Lx = 2
print("The new copy after the original is modified: \n\t{}".format(box3))
print("The modified original box: \n\t{}".format(box2))

The original box:
 Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)
The copied box:
 Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)

The original box is modified:
 Box(Lx=5.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)
The copied box is not:
 Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)

The new copy:
 Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)
The new copy after the original is modified:
 Box(Lx=2.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)
The modified original box:
 Box(Lx=2.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)

From a matrix

A box can be constructed directly from the box matrix representation
described above using the Box.from_matrix method.

In [3]:

Matrix representation. Note that the box vectors must represent
a right-handed coordinate system! This translates to requiring
that the matrix be upper triangular.
box = freud.box.Box.from_matrix([[1, 1, 0], [0, 1, 0.5], [0, 0, 0.5]])
print("This is a 3D box from a matrix: \n\t{}\n".format(box))

2D box
box = freud.box.Box.from_matrix([[1, 0, 0], [0, 1, 0], [0, 0, 0]])
print("This is a 2D box from a matrix: \n\t{}\n".format(box))

Automatic matrix detection using from_box
box = freud.box.Box.from_box([[1, 1, 0], [0, 1, 0.5], [0, 0, 0.5]])
print("The box matrix was automatically detected: \n\t{}\n".format(box))

Boxes can be numpy arrays as well
import numpy as np
box = freud.box.Box.from_box(np.array([[1, 1, 0], [0, 1, 0.5], [0, 0, 0.5]]))
print("Using a 3x3 numpy array: \n\t{}".format(box))

This is a 3D box from a matrix:
 Box(Lx=1.0, Ly=1.0, Lz=0.5, xy=1.0, xz=0.0, yz=1.0, dimensions=3)

This is a 2D box from a matrix:
 Box(Lx=1.0, Ly=1.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, dimensions=2)

The box matrix was automatically detected:
 Box(Lx=1.0, Ly=1.0, Lz=0.5, xy=1.0, xz=0.0, yz=1.0, dimensions=3)

Using a 3x3 numpy array:
 Box(Lx=1.0, Ly=1.0, Lz=0.5, xy=1.0, xz=0.0, yz=1.0, dimensions=3)

From a namedtuple or dict

A box can be also be constructed from a namedtuple with the appropriate
entries. Any other object that provides a similar API for
attribute-based access of \(L_x\), \(L_y\), \(L_z\),
\(xy\), \(xz\), and \(yz\) (or some subset) will work
equally well. This method is suitable for passing in box objects
constructed by some other program, for example.

In [4]:

from collections import namedtuple
MyBox = namedtuple('mybox', ['Lx', 'Ly', 'Lz', 'xy', 'xz', 'yz', 'dimensions'])

box = freud.box.Box.from_box(MyBox(Lx=5, Ly=3, Lz=2, xy=0, xz=0, yz=0, dimensions=3))
print("Box from named tuple: \n\t{}\n".format(box))

box = freud.box.Box.from_box(MyBox(Lx=5, Ly=3, Lz=0, xy=0, xz=0, yz=0, dimensions=2))
print("2D Box from named tuple: \n\t{}".format(box))

Box from named tuple:
 Box(Lx=5.0, Ly=3.0, Lz=2.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)

2D Box from named tuple:
 Box(Lx=5.0, Ly=3.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, dimensions=2)

Similarly, construction is also possible using any object that supports
key-value indexing, such as a dict.

In [5]:

box = freud.box.Box.from_box(dict(Lx=5, Ly=3, Lz=2))
print("Box from dict: \n\t{}".format(box))

Box from dict:
 Box(Lx=5.0, Ly=3.0, Lz=2.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)

From a list

Finally, boxes can be constructed from any simple iterable that provides
the elements in the correct order.

In [6]:

box = freud.box.Box.from_box((5, 6, 7, 0.5, 0, 0.5))
print("Box from tuple: \n\t{}\n".format(box))

box = freud.box.Box.from_box([5, 6])
print("2D Box from list: \n\t{}".format(box))

Box from tuple:
 Box(Lx=5.0, Ly=6.0, Lz=7.0, xy=0.5, xz=0.0, yz=0.5, dimensions=3)

2D Box from list:
 Box(Lx=5.0, Ly=6.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, dimensions=2)

Convenience APIs

We also provide convenience constructors for common geometries, namely
square (2D) and cubic (3D) boxes.

In [7]:

cube_box = freud.box.Box.cube(L=5)
print("Cubic Box: \n\t{}\n".format(cube_box))

square_box = freud.box.Box.square(L=5)
print("Square Box: \n\t{}".format(square_box))

Cubic Box:
 Box(Lx=5.0, Ly=5.0, Lz=5.0, xy=0.0, xz=0.0, yz=0.0, dimensions=3)

Square Box:
 Box(Lx=5.0, Ly=5.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, dimensions=2)

Export

If you want to export or display the box, you can export box objects
into their matrix or namedtuple representations, which provide
completely specified descriptions of the box. Note that the namedtuple
type used by freud boxes, the BoxTuple, is simply an internal
representation.

In [8]:

cube_box = freud.box.Box.cube(L=5)
cube_box.to_matrix()

Out[8]:

[[5.0, 0.0, 0.0], [0, 5.0, 0.0], [0, 0, 5.0]]

In [9]:

cube_box.to_tuple()

Out[9]:

BoxTuple(Lx=5.0, Ly=5.0, Lz=5.0, xy=0.0, xz=0.0, yz=0.0)

Using boxes

Given a freud box object, you can query it for all its attributes.

In [10]:

box = freud.box.Box.from_matrix([[10, 0, 0], [0, 10, 0], [0, 0, 10]])
print("L_x = {}, L_y = {}, L_z = {}, xy = {}, xz = {}, yz = {}".format(
 box.Lx, box.Ly, box.Lz, box.xy, box.xz, box.yz))

print("The length vector: {}".format(box.L))
print("The inverse length vector: ({:1.2f}, {:1.2f}, {:1.2f})".format(*[L for L in box.Linv]))

L_x = 10.0, L_y = 10.0, L_z = 10.0, xy = 0.0, xz = 0.0, yz = 0.0
The length vector: (10.0, 10.0, 10.0)
The inverse length vector: (0.10, 0.10, 0.10)

Boxes also support converting to and from fractional coordinates.

Note that the origin in real coordinates is defined at the center of
the box. This means the fractional coordinate range \([0, 1]\)
maps onto \([-L/2, L/2]\), not \([0, L]\).

In [11]:

Conversion to coordinate representation from fractions.
print(box.makeCoordinates([0, 0, 0]))
print(box.makeCoordinates([0.5, 0.5, 0.5]))
print(box.makeCoordinates([0.8, 0.3, 1]))
print()

Conversion to and from coordinate representation, resulting
in the input fractions.
print(box.makeFraction(box.makeCoordinates([0, 0, 0])))
print(box.makeFraction(box.makeCoordinates([0.5, 0.5, 0.5])))
print("[{:1.1f}, {:1.1f}, {:1.1f}]".format(*box.makeFraction(box.makeCoordinates([0.8, 0.3, 1]))))

[-5.0, -5.0, -5.0]
[0.0, 0.0, 0.0]
[3.0, -2.0, 5.0]

[0.0, 0.0, 0.0]
[0.5, 0.5, 0.5]
[0.8, 0.3, 1.0]

Finally (and most critically for enforcing periodicity), boxes support
wrapping vectors from outside the box into the box. The concept of
periodicity and box wrapping is most easily demonstrated visually.

In [12]:

We define box plot generation separately
from util import box_2d_to_points

Construct the box and get points for plotting
Lx = Ly = 10
xy = 0.5
box = freud.box.Box.from_matrix([[Lx, xy*Ly, 0], [0, Ly, 0], [0, 0, 0]])
points = box_2d_to_points(box)

In [13]:

from matplotlib import pyplot as plt
fig, ax = plt.subplots(figsize=(9, 6))
ax.plot(points[:, 0], points[:, 1], color='k')
plt.show()

<Figure size 900x600 with 1 Axes>

In [14]:

plt.figure()
plt.plot(points[:, 0], points[:, 1])
plt.show()

[image: ../../_images/examples_module_intros_Box-Box_26_0.png]

With periodic boundary conditions, what this actually represents is an
infinite set of these boxes tiling space. For example, you can locally
picture this box as surrounding by a set of identical boxes.

In [15]:

fig, ax = plt.subplots(figsize=(9, 6))
ax.plot(points[:, 0], points[:, 1], color='k')
ax.plot(points[:, 0] + Lx, points[:, 1], linestyle='dashed', color='k')
ax.plot(points[:, 0] - Lx, points[:, 1], linestyle='dashed', color='k')
ax.plot(points[:, 0] + xy*Ly, points[:, 1] + Ly, linestyle='dashed', color='k')
ax.plot(points[:, 0] - xy*Ly, points[:, 1] - Ly, linestyle='dashed', color='k')
plt.show()

[image: ../../_images/examples_module_intros_Box-Box_28_0.png]

Any particles in the original box will also therefore be seen as
existing in all the neighboring boxes.

In [16]:

np.random.seed(0)
tmp = np.random.rand(5, 2)
origin = np.array(box.makeCoordinates([0, 0, 0]))
u = np.array(box.makeCoordinates([1, 0, 0])) - origin
v = np.array(box.makeCoordinates([0, 1, 0])) - origin
particles = u*tmp[:, [0]] + v*tmp[:, [1]]

In [17]:

fig, ax = plt.subplots(figsize=(9, 6))

Plot the boxes.
ax.plot(points[:, 0], points[:, 1], color='k')
ax.plot(points[:, 0] + Lx, points[:, 1], linestyle='dashed', color='k')
ax.plot(points[:, 0] - Lx, points[:, 1], linestyle='dashed', color='k')
ax.plot(points[:, 0] + xy*Ly, points[:, 1] + Ly, linestyle='dashed', color='k')
ax.plot(points[:, 0] - xy*Ly, points[:, 1] - Ly, linestyle='dashed', color='k')

Plot the points in the original box.
ax.plot(particles[:, 0] + origin[0], particles[:, 1] + origin[1],
 linestyle='None', marker='.', color='#1f77b4')

Define the different origins.
origins = []
origins.append(np.array(box.makeCoordinates([-1, 0, 0])))
origins.append(np.array(box.makeCoordinates([1, 0, 0])))
origins.append(np.array(box.makeCoordinates([0, -1, 0])))
origins.append(np.array(box.makeCoordinates([0, 1, 0])))

Plot particles in each of the periodic boxes.
for o in origins:
 ax.plot(particles[:, 0] + o[0], particles[:, 1] + o[1],
 linestyle='None', marker='.', color='#1f77b4')
plt.show()

[image: ../../_images/examples_module_intros_Box-Box_31_0.png]

Box wrapping takes points in the periodic images of a box, and brings
them back into the original box. In this context, that means that if we
apply wrap to each of the sets of particles plotted above, they should
all overlap.

In [18]:

fig, axes = plt.subplots(2, 2, figsize=(12, 8))

Plot the boxes.
for i, ax in enumerate(axes.flatten()):
 ax.plot(points[:, 0], points[:, 1], color='k')
 ax.plot(points[:, 0] + Lx, points[:, 1], linestyle='dashed', color='k')
 ax.plot(points[:, 0] - Lx, points[:, 1], linestyle='dashed', color='k')
 ax.plot(points[:, 0] + xy*Ly, points[:, 1] + Ly, linestyle='dashed', color='k')
 ax.plot(points[:, 0] - xy*Ly, points[:, 1] - Ly, linestyle='dashed', color='k')

 # Plot the points relative to origin i.
 o = origins[i]
 ax.plot(particles[:, 0] + o[0], particles[:, 1] + o[1],
 linestyle='None', marker='.', label='Original')

 # Now wrap these points and plot them.
 wrapped_particles = box.wrap(particles + o)
 ax.plot(wrapped_particles[:, 0], wrapped_particles[:, 1],
 linestyle='None', marker='.', label='Wrapped')
 ax.tick_params(axis="both", which="both", labelsize=14)

 ax.legend(fontsize=14)
plt.show()

[image: ../../_images/examples_module_intros_Box-Box_33_0.png]

ParticleBuffer - Unit Cell RDF

The ParticleBuffer class is meant to replicate particles beyond a
single image while respecting box periodicity. This example demonstrates
how we can use this to compute the radial distribution function from a
sample crystal’s unit cell.

In [1]:

import freud
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from util import box_2d_to_points

Here, we create a box to represent the unit cell and put two points
inside. We plot the box and points below.

In [2]:

box = freud.box.Box(Lx=2, Ly=2, xy=np.sqrt(1/3), is2D=True)
points = np.asarray([[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]])
corners = box_2d_to_points(box)
ax = plt.gca()
box_patch = plt.Polygon(corners[:, :2])
patch_collection = matplotlib.collections.PatchCollection([box_patch], edgecolors='black', alpha=0.4)
ax.add_collection(patch_collection)
plt.scatter(points[:, 1], points[:, 2])
plt.show()

[image: ../../_images/examples_module_intros_Box-ParticleBuffer_3_0.png]

Next, we create a ParticleBuffer instance and have it compute the
“buffer” particles that lie outside the first periodicity. These
positions are stored in the buffer_positions attribute. The
corresponding buffer_ids array gives a mapping from the index of the
buffer particle to the index of the particle it was replicated from, in
the original array of points. Finally, the buffer_box attribute
returns a larger box, expanded from the original box to contain the
replicated points.

In [3]:

pbuff = freud.box.ParticleBuffer(box)
pbuff.compute(points, 6, images=True)
print(pbuff.buffer_particles[:10], '...')

[[-9.964102 -6.5 0.]
 [-8.809401 -4.5 0.]
 [-7.6547003 -2.5 0.]
 [-6.5 -0.5 0.]
 [-5.3452992 1.5 0.]
 [-4.1905985 3.5 0.]
 [-3.0358982 5.5 0.]
 [-7.9641013 -6.5 0.]
 [-6.8094006 -4.5 0.]
 [-5.6547003 -2.5 0.]] ...

Below, we plot the original unit cell and the replicated buffer points
and buffer box.

In [4]:

plt.scatter(points[:, 0], points[:, 1])
plt.scatter(pbuff.buffer_particles[:, 0], pbuff.buffer_particles[:, 1])
box_patch = plt.Polygon(corners[:, :2])
buff_corners = box_2d_to_points(pbuff.buffer_box)
buff_box_patch = plt.Polygon(buff_corners[:, :2])
patch_collection = matplotlib.collections.PatchCollection(
 [box_patch, buff_box_patch], facecolors=['blue', 'orange'],
 edgecolors='black', alpha=0.2)
plt.gca().add_collection(patch_collection)
plt.show()

[image: ../../_images/examples_module_intros_Box-ParticleBuffer_7_0.png]

Finally, we can plot the radial distribution function (RDF) of this
replicated system, using a value of rmax that is larger than the
size of the original box. This allows us to see the interaction of the
original particles in ref_points with their replicated neighbors
from the buffer in points.

In [5]:

rdf = freud.density.RDF(rmax=5, dr=0.02)
rdf.compute(pbuff.buffer_box, ref_points=points, points=pbuff.buffer_particles)
plt.plot(rdf.R, rdf.RDF)
plt.show()

[image: ../../_images/examples_module_intros_Box-ParticleBuffer_9_0.png]

LinkCell

Many of the most powerful analyses of particle simulations involve some
characterization of the local environments of particles. Whether the
analyses involve finding clusters, identifying interfaces, computing
order parameters, or something else entirely, they always require
finding particles in proximity to others so that properties of the local
environment can be computed. The freud.locality.NeighborList and
freud.locality.LinkCell classes are the fundamental building blocks
for this type of calculation. The NeighborList class is essentially
a container for particle pairs that are determined to be adjacent to one
another. The LinkCell class implements the standard linked-list cell
algorithm, in which a cell
list [https://en.wikipedia.org/wiki/Cell_lists] is computed using
linked lists [https://en.wikipedia.org/wiki/Linked_list] to store
the particles in each cell. In this notebook, we provide a brief
demonstration of how this data structure works and how it is used
throughout freud.

We begin by demonstrating how a cell list works, which is essentially by
dividing space into fixed width cells.

In [1]:

from __future__ import division
import freud
import numpy as np
from matplotlib import pyplot as plt
import timeit

place particles 0 and 1 in cell 0
place particle 2 in cell 1
place particles 3,4,5 in cell 3
and no particles in cells 4,5,6,7
particles = np.array([[-0.5, -0.5, 0],
 [-0.6, -0.6, 0],
 [0.5, -0.5, 0],
 [-0.5, 0.5, 0],
 [-0.6, 0.6, 0],
 [-0.7, 0.7, 0]], dtype='float32')

L = 2 # The box size
r_max = 1 # The cell width, and the nearest neighbor distance
box = freud.box.Box.square(L)
lc = freud.locality.LinkCell(box, r_max)
lc.compute(box, particles)

for c in range(0, lc.num_cells):
 print("The following particles are in cell {}: {}".format(c, ', '.join([str(x) for x in lc.itercell(c)])))

The following particles are in cell 0: 0, 1
The following particles are in cell 1: 2
The following particles are in cell 2: 3, 4, 5
The following particles are in cell 3:

In [2]:

from matplotlib import patches
from matplotlib import cm
cmap = cm.get_cmap('plasma')
colors = [cmap(i/lc.num_cells) for i in range(lc.num_cells)]

fig, ax = plt.subplots(figsize=(9, 6))
ax.scatter(particles[:, 0], particles[:, 1])
ax.set_xlim([-1, 1])
ax.set_ylim([-1, 1])
corners = [(-1, -1), (0, -1), (-1, 0), (0, 0)]
handles = []
labels = []
for i, corner in enumerate(corners):
 p = patches.Rectangle(corner, 1, 1, color=colors[i], alpha=0.3)
 ax.add_patch(p)
 handles.append(p)
 labels.append("Cell {}".format(i))
ax.tick_params(axis='both', which='both', labelsize=14)
fig.legend(handles, labels, fontsize=16)
fig.subplots_adjust(right=0.8)
for i, p in enumerate(particles):
 ax.text(p[0]+0.05, p[1]-0.03, "Particle {}".format(i), fontsize=14)

[image: ../../_images/examples_module_intros_Locality-LinkCell_3_0.png]

The principle behind a cell list is that depending on how close
particles have to be to be considered neighbors, we can construct a cell
list of an appropriate width such that a given particle’s neighbors can
always be found by only looking in the neighboring cells, saving us the
work of checking all the other particles in the system. We can now
extract the NeighborList object computed using this cell list for
finding particle neighbors.

In [3]:

nlist = lc.nlist
for i in set(nlist.index_i):
 js = nlist.index_j[nlist.index_i == i]
 print("The particles within a distance 1 of particle {} are: {}".format(
 i, ', '.join([str(j) for j in js])))

The particles within a distance 1 of particle 0 are: 1, 4, 5
The particles within a distance 1 of particle 1 are: 0, 2, 3, 4, 5
The particles within a distance 1 of particle 2 are: 1
The particles within a distance 1 of particle 3 are: 1, 4, 5
The particles within a distance 1 of particle 4 are: 0, 1, 3, 5
The particles within a distance 1 of particle 5 are: 0, 1, 3, 4

Finally, we can easily check this computation manually by just computing
particle distances. Note that we need to be careful to make sure that we
properly respect the box periodicity, which means that interparticle
distances should be calculated according to the minimum image
convention [https://en.wikipedia.org/wiki/Periodic_boundary_conditions].
In essence, this means that since the box is treated as being infinitely
replicated in all directions, we have to ensure that each particle is
only interacting with the closest copy of another particle. We can
easily enforce this here by making sure that particle distances are
never large than half the box length in any given dimension.

In [4]:

def compute_distances(box, positions):
 """Compute pairwise particle distances, taking into account PBCs.

 Args:
 box (:class:`freud.box.Box`): The simulation box the particles live in.
 positions (:class:`np.ndarray`): The particle positions.
 """
 # First we shift all the particles so that the coordinates lie from
 # [0, L] rather than [-L/2, L/2].
 positions[:, 0] = np.mod(positions[:, 0]+box.Lx/2, box.Lx)
 positions[:, 1] = np.mod(positions[:, 1]+box.Ly/2, box.Ly)
 positions[:, 0] = np.mod(positions[:, 0]+box.Lx/2, box.Lx)
 positions[:, 1] = np.mod(positions[:, 1]+box.Ly/2, box.Ly)

 # To apply minimum image convention, we check if the distance is
 # greater than half the box length in either direction, and if it
 # is, we replace it with L-distance instead. We use broadcasting
 # to get all pairwise positions, then modify the pos2 array where
 # the distance is found to be too large for a specific pair.
 pos1, pos2 = np.broadcast_arrays(positions[np.newaxis, :, :], positions[:, np.newaxis, :])
 vectors = pos1 - pos2
 pos2[:, :, 0] = np.where(np.abs(vectors[:, :, 0]) > box.Lx/2,
 box.Lx - np.abs(pos2[:, :, 0]),
 pos2[:, :, 0])
 pos2[:, :, 1] = np.where(np.abs(vectors[:, :, 1]) > box.Ly/2,
 box.Ly - np.abs(pos2[:, :, 1]),
 pos2[:, :, 1])

 distances = np.linalg.norm(pos1 - pos2, axis=-1)
 return distances

In [5]:

pairwise_distances = compute_distances(box, particles)
for i in range(pairwise_distances.shape[0]):
 js = np.where(pairwise_distances[i, :] < r_max)
 print("The particles within a distance 1 of particle {} are: {}".format(
 i, ', '.join([str(j) for j in js[0] if not j==i])))

The particles within a distance 1 of particle 0 are: 1, 4, 5
The particles within a distance 1 of particle 1 are: 0, 2, 3, 4, 5
The particles within a distance 1 of particle 2 are: 1
The particles within a distance 1 of particle 3 are: 1, 4, 5
The particles within a distance 1 of particle 4 are: 0, 1, 3, 5
The particles within a distance 1 of particle 5 are: 0, 1, 3, 4

For larger systems, however, such pairwise calculations would quickly
become prohibitively expensive. The primary benefit of the LinkCell
object is that it can dramatically improve this cost.

In [6]:

log_Ns = np.arange(5, 12)
lc_times = []
naive_times = []
for log_N in log_Ns:
 print("Running for log_N = {}".format(log_N))
 particles = np.random.rand(int(2**log_N), 3)*L-L/2
 particles[:, 0] = 0
 lc_times.append(timeit.timeit("lc.compute(box, particles)", number=10, globals=globals()))
 naive_times.append(timeit.timeit("compute_distances(box, particles)", number=10, globals=globals()))

Running for log_N = 5
Running for log_N = 6
Running for log_N = 7
Running for log_N = 8
Running for log_N = 9
Running for log_N = 10
Running for log_N = 11

In [7]:

fig, ax = plt.subplots()
ax.plot(2**log_Ns, lc_times, label="LinkCell")
ax.plot(2**log_Ns, naive_times, label="Naive Calculation")
ax.legend(fontsize=14)
ax.tick_params(axis='both', which='both', labelsize=14)
ax.set_xlabel("Number of particles", fontsize=14)
ax.set_ylabel("Time to compute (s)", fontsize=14);

[image: ../../_images/examples_module_intros_Locality-LinkCell_11_0.png]

Nearest Neighbors

One of the basic computations required for higher-level computations
(such as the hexatic order
parameter) is finding the nearest
neighbors of a particle. This tutorial will show you how to compute the
nearest neighbors and visualize that data.

The algorithm is straightforward:

for each particle i:
 for each particle j in neighbor_cells(i):
 r_ij = position[j] - position[i]
 r = sqrt(dot(r_ij, r_ij))
 l_r_array.append(r)
 l_n_array.append(j)
 # sort by distance
 sort(n_array, r_array)
 neighbor_array[i] = n_array[:k]

The data sets used in this example are a system of hard hexagons,
simulated in the NVT thermodynamic ensemble in HOOMD-blue, for a dense
fluid of hexagons at packing fraction \(\phi = 0.65\) and a solid at
packing fractions \(\phi = 0.75\).

In [1]:

from bokeh.io import output_notebook
output_notebook()
from bokeh.models import Legend
from bokeh.plotting import figure, output_file, show
from bokeh.layouts import