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Overview

The freud Python library provides a simple, flexible, powerful set of tools
for analyzing trajectories obtained from molecular dynamics or Monte Carlo
simulations. High performance, parallelized C++ is used to compute standard
tools such as radial distribution functions, correlation functions, order
parameters, and clusters, as well as original analysis methods including
potentials of mean force and torque (PMFTs) and local environment matching. The
freud library supports
many input formats [https://freud.readthedocs.io/en/stable/datainputs.html]
and outputs NumPy arrays [https://www.numpy.org/], enabling integration
with the scientific Python ecosystem for many typical materials science
workflows.




Resources


	Reference Documentation [https://freud.readthedocs.io/]: Examples, tutorials, topic guides, and package Python APIs.


	Installation Guide [https://freud.readthedocs.io/en/stable/gettingstarted/installation.html]: Instructions for installing and compiling freud.


	freud-users Google Group [https://groups.google.com/d/forum/freud-users]: Ask questions to the freud user community.


	GitHub repository [https://github.com/glotzerlab/freud]: Download the freud source code.


	Issue tracker [https://github.com/glotzerlab/freud/issues]: Report issues or request features.







Citation

When using freud to process data for publication, please use this citation [https://freud.readthedocs.io/en/stable/reference/citing.html].




Installation

The easiest ways to install freud are using pip:

pip install freud-analysis





or conda:

conda install -c conda-forge freud





freud is also available via containers for Docker [https://hub.docker.com/r/glotzerlab/software] or Singularity [https://glotzerlab.engin.umich.edu/downloads/glotzerlab].  If you need more detailed
information or wish to install freud from source, please refer to the
Installation Guide [https://freud.readthedocs.io/en/stable/gettingstarted/installation.html] to compile
freud from source.




Examples

The freud library is called using Python scripts. Many core features are
demonstrated in the freud documentation [https://freud.readthedocs.io/en/stable/examples.html]. The examples come in
the form of Jupyter notebooks, which can also be downloaded from the freud
examples repository [https://github.com/glotzerlab/freud-examples] or
launched interactively on Binder [https://mybinder.org/v2/gh/glotzerlab/freud-examples/master?filepath=index.ipynb].
Below is a sample script that computes the radial distribution function for a
simulation run with HOOMD-blue [https://hoomd-blue.readthedocs.io/] and
saved into a GSD file [https://gsd.readthedocs.io/].

import freud
import gsd.hoomd

# Create a freud compute object (RDF is the canonical example)
rdf = freud.density.RDF(bins=50, r_max=5)

# Load a GSD trajectory (see docs for other formats)
traj = gsd.hoomd.open('trajectory.gsd', 'rb')
for frame in traj:
    rdf.compute(system=frame, reset=False)

# Get bin centers, RDF data from attributes
r = rdf.bin_centers
y = rdf.rdf








Support and Contribution

Please visit our repository on GitHub [https://github.com/glotzerlab/freud] for the library source code.
Any issues or bugs may be reported at our issue tracker [https://github.com/glotzerlab/freud/issues], while questions and discussion can be directed to our user forum [https://groups.google.com/forum/#!forum/freud-users].
All contributions to freud are welcomed via pull requests!
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Introduction

The freud library is a Python package for analyzing particle simulations.
The package is designed to directly use numerical arrays of data, making it easy to use for a wide range of use-cases.
The most common use-case of freud is for computing quantities from molecular dynamics simulation trajectories, but it can be used for analyzing any type of particle simulation.
By operating directly on numerical arrays of data, freud allows users to parse custom simulation outputs into a suitable structure for input, rather than relying specific file types or data structures.

The core of freud is analysis of periodic systems, which are represented through the freud.box.Box class.
The freud.box.Box supports arbitrary triclinic systems for maximum flexibility, and is used throughout the package to ensure consistent treatment of these systems.
The package’s many methods are encapsulated in various compute classes, which perform computations and populate class attributes for access.
Of particular note are the various computations based on nearest neighbor finding in order to characterize particle environments.
Such methods are simplified and accelerated through a centralized neighbor finding interface defined in the freud.locality.NeighborQuery family of classes in the freud.locality module of freud.





          

      

      

    

  

    
      
          
            
  


Installation


Installing freud

The freud library can be installed via conda [https://conda.io/projects/conda/] or pip, or compiled from source.


Install via conda

The code below will install freud from conda-forge [https://anaconda.org/conda-forge/freud].

conda install -c conda-forge freud








Install via pip

The code below will install freud from PyPI [https://pypi.org/project/freud-analysis/].

pip install freud-analysis








Compile from source

The following are required for installing freud:


	Python [https://www.python.org/] (3.5+ required)


	NumPy [https://www.numpy.org/]


	Intel Threading Building Blocks [https://www.threadingbuildingblocks.org/] (TBB)


	Cython [https://cython.org/] (0.29+ required)




The following are optional for installing freud:

For conda users, these requirements can be met by installing the following packages from the conda-forge channel [https://conda-forge.org/]:

conda install -c conda-forge tbb tbb-devel numpy cython





The code that follows builds freud and installs it for all users (append --user if you wish to install it to your user site directory):

git clone --recurse-submodules https://github.com/glotzerlab/freud.git
cd freud
python setup.py install





You can also build freud in place so that you can run from within the folder:

# Run tests from the tests directory
python setup.py build_ext --inplace





Building freud in place has certain advantages, since it does not affect your Python behavior except within the freud directory itself (where freud can be imported after building).
Additionally, due to limitations inherent to the distutils/setuptools infrastructure, building extension modules can only be parallelized using the build_ext subcommand of setup.py, not with install.
As a result, it will be faster to manually run build_ext and then install (which normally calls build_ext under the hood anyway) the built packages.
In general, the following options are available for setup.py in addition to the standard setuptools options (notes are included to indicate which options are only available for specific subcommands such as build_ext):


	--PRINT-WARNINGS
	Specify whether or not to print compilation warnings resulting from the build even if the build succeeds with no errors.



	-j
	Compile in parallel.
This affects both the generation of C++ files from Cython files and the subsequent compilation of the source files.
In the latter case, this option controls the number of Python modules that will be compiled in parallel.



	--TBB-ROOT
	The root directory where TBB is installed.
Useful if TBB is installed in a non-standard location or cannot be located by Python for some other reason.
Note that this information can also be provided using the environment variable TBB_ROOT.
The options --TBB-INCLUDE and --TBB-LINK will take precedence over --TBB-ROOT if both are specified.



	--TBB-INCLUDE
	The directory where the TBB headers (e.g. tbb.h) are located.
Useful if TBB is installed in a non-standard location or cannot be located by Python for some other reason.
Note that this information can also be provided using the environment variable TBB_ROOT.
The options --TBB-INCLUDE and --TBB-LINK will take precedence over --TBB-ROOT if both are specified.



	--TBB-LINK
	The directory where the TBB shared library (e.g. libtbb.so or libtbb.dylib) is located.
Useful if TBB is installed in a non-standard location or cannot be located by Python for some other reason.
Note that this information can also be provided using the environment variable TBB_ROOT.
The options --TBB-INCLUDE and --TBB-LINK will take precedence over --TBB-ROOT if both are specified.





The following additional arguments are primarily useful for developers:


	--COVERAGE
	Build the Cython files with coverage support to check unit test coverage.



	--NTHREAD
	Specify the number of threads to allocate to compiling each module.
This option is primarily useful for rapid development, particularly when all changes are in one module.
While the -j option will not help parallelize this case, this option allows compilation of multiple source files belonging to the same module in parallel.






Note

freud makes use of git submodules. If you ever wish to manually update these, you can execute:

git submodule update --init












Unit Tests

The unit tests for freud are included in the repository and are configured to be run using the Python unittest [https://docs.python.org/3/library/unittest.html#module-unittest] library:

# Run tests from the tests directory
cd tests
python -m unittest discover .





Note that because freud is designed to require installation to run (i.e. it cannot be run directly out of the build directory), importing freud from the root of the repository will fail because it will try and import the package folder.
As a result, unit tests must be run from outside the root directory if you wish to test the installed version of freud.
If you want to run tests within the root directory, you can instead build freud in place:

# Run tests from the tests directory
python setup.py build_ext --inplace





This build will place the necessary files alongside the freud source files so that freud can be imported from the root of the repository.




Documentation

The documentation for freud is hosted online at ReadTheDocs [https://freud.readthedocs.io/].
You may also build the documentation yourself.


Building the documentation

The following are required for building freud documentation:


	Sphinx [http://www.sphinx-doc.org/]


	Read the Docs Sphinx Theme [https://sphinx-rtd-theme.readthedocs.io/]


	nbsphinx [https://nbsphinx.readthedocs.io/]


	jupyter_sphinx [https://jupyter-sphinx.readthedocs.io/]


	sphinxcontrib-bibtex [https://sphinxcontrib-bibtex.readthedocs.io/]




You can install these dependencies using conda:

conda install -c conda-forge sphinx sphinx_rtd_theme nbsphinx jupyter_sphinx sphinxcontrib-bibtex





or pip:

pip install sphinx sphinx-rtd-theme nbsphinx jupyter-sphinx sphinxcontrib-bibtex





To build the documentation, run the following commands in the source directory:

cd doc
make html
# Then open build/html/index.html





To build a PDF of the documentation (requires LaTeX and/or PDFLaTeX):

cd doc
make latexpdf
# Then open build/latex/freud.pdf













          

      

      

    

  

    
      
          
            
  


Quickstart Guide

Once you have installed freud, you can start using freud with any simulation data that you have on hand.
As an example, we’ll assume that you have run a simulation using the HOOMD-blue [https://glotzerlab.engin.umich.edu/hoomd-blue/] and used the hoomd.dump.gsd [https://hoomd-blue.readthedocs.io/en/stable/module-hoomd-dump.html#hoomd.dump.gsd] command to output the trajectory into a file trajectory.gsd.
The GSD file format [https://gsd.readthedocs.io/en/stable/] provides its own convenient Python file reader that offers access to data in the form of NumPy arrays, making it immediately suitable for calculation with freud. Many other file readers and data formats are supported, see Reading Simulation Data for freud for a full list and more examples.

We start by reading the data into a NumPy array:

import gsd.hoomd
traj = gsd.hoomd.open('trajectory.gsd', 'rb')





We can now immediately calculate important quantities.
Here, we will compute the radial distribution function \(g(r)\) using the freud.density.RDF compute class.
Since the radial distribution function is in practice computed as a histogram, we must specify the histogram bin widths and the largest interparticle distance to include in our calculation.
To do so, we simply instantiate the class with the appropriate parameters and then perform a computation on the given data:

import freud
rdf = freud.density.RDF(bins=50, r_max=5)
rdf.compute(system=traj[-1])





We can now access the data through properties of the rdf object.

r = rdf.bin_centers
y = rdf.rdf





Many classes in freud natively support plotting their data using Matplotlib <https://matplotlib.org/>:

import matplotlib as plt
fig, ax = plt.subplots()
rdf.plot(ax=ax)





You will note that in the above example, we computed \(g(r)\) only using the final frame of the simulation trajectory, traj[-1].
However, in many cases, radial distributions and other similar quantities may be noisy in simulations due to the natural fluctuations present.
In general, what we are interested in are time-averaged quantities once a system has equilibrated.
To perform such a calculation, we can easily modify our original calculation to take advantage of freud’s accumulation features.
To accumulate, just add the argument reset=False with a supported compute object (such as histogram-like computations).
Assuming that you have some method for identifying the frames you wish to include in your sample, our original code snippet would be modified as follows:

import freud
rdf = freud.density.RDF(bins=50, r_max=5)
for frame in traj:
    rdf.compute(frame, reset=False)





You can then access the data exactly as we previously did.
And that’s it!

Now that you’ve seen a brief example of reading data and computing a radial distribution function, you’re ready to learn more.
If you’d like a complete walkthrough please see the Tutorial.
The tutorial walks through many of the core concepts in freud in greater detail, starting with the basics of the simulation systems we analyze and describing the details of the neighbor finding logic in freud.
To see specific features of freud in action, look through the Examples.
More detailed documentation on specific classes and functions can be found in the API documentation.





          

      

      

    

  

    
      
          
            
  


Tutorial

This tutorial provides a complete introduction to freud.
Rather than attempting to touch on all features in freud, it focuses on common core concepts that will help understand how freud works with data and exposes computations to the user.
The tutorial begins by introducing the fundamental concepts of periodic systems as implemented in freud and the concept of Compute classes, which consitute the primary API for performing calculations with freud.
The tutorial then discusses the most common calculation performed in freud, finding neighboring points in periodic systems.
The package’s neighbor finding tools are tuned for high performance neighbor finding, which is what enables most of other calculations in freud, which typically involve characterizing local environments of points in some way.
The next part of the tutorial discusses the role of histograms in freud, focusing on the common features and properties that all histograms share.
Finally, the tutorial includes a few more complete demonstrations of using freud that should provide reasonable templates for use with almost any other features in freud.



	Periodic Boundary Conditions

	Compute Classes
	Accessing Computed Properties





	Finding Neighbors
	Problem Statement

	Neighbor Querying

	Neighbor Lists





	Pair Computations
	Binary Systems













          

      

      

    

  

    
      
          
            
  


Periodic Boundary Conditions

The central goal of freud is the analysis of simulations performed in periodic boxes.
Periodic boundary conditions are ubiquitous in simulations because they permit the simulation of quasi-infinite systems with minimal computational effort.
As long as simulation systems are sufficiently large, i.e. assuming that points in the system experience correlations over length scales substantially smaller than the system length scale, periodic boundary conditions ensure that the system appears effectively infinite to all points.

In order to consistently define the geometry of a simulation system with periodic boundaries, freud defines the freud.box.Box class.
The class encapsulates the concept of a triclinic simulation box in a right-handed coordinate system.
Triclinic boxes are defined as parallelepipeds: three-dimensional polyhedra where every face is a parallelogram.
In general, any such box can be represented by three distinct, linearly independent box vectors.
Enforcing the requirement of right-handedness guarantees that the box can be represented by a matrix of the form


\begin{eqnarray*}
\mathbf{h}& =& \left(\begin{array}{ccc} L_x & xy L_y & xz L_z \\
                                        0   & L_y    & yz L_z \\
                                        0   & 0      & L_z    \\
                     \end{array}\right)
\end{eqnarray*}
where each column is one of the box vectors.

As such, the box is characterized by six parameters: the box vector lengths \(L_x\), \(L_y\), and \(L_z\), and the tilt factors \(xy\), \(xz\), and \(yz\).
The tilt factors are directly related to the angles between the box vectors.
All computations in freud are built around this class, ensuring that they naturally handle data from simulations conducted in non-cubic systems.
There is also native support for two-dimensional (2D) systems when setting \(L_z = 0\).

Boxes can be constructed in a variety of ways.
For simple use-cases, one of the factory functions of the freud.box.Box provides the easiest possible interface:

# Make a 10x10 square box (for 2-dimensional systems).
freud.box.Box.square(10)

# Make a 10x10x10 cubic box.
freud.box.Box.cube(10)





For more complex use-cases, the freud.box.Box.from_box() method provides an interface to create boxes from any object that can easily be interpreted as a box.

# Create a 10x10 square box from a list of two items.
freud.box.Box.from_box([10, 10])

# Create a 10x10x10 cubic box from a list of three items.
freud.box.Box.from_box([10, 10, 10])

# Create a triclinic box from a list of six items (including tilt factors).
freud.box.Box.from_box([10, 5, 2, 0.1, 0.5, 0.7])

# Create a triclinic box from a dictionary.
freud.box.Box.from_box(dict(Lx=8, Ly=7, Lz=10, xy=0.5, xz=0.7, yz=0.2))

# Directly call the constructor.
freud.box.Box(Lx=8, Ly=7, Lz=10, xy=0.5, xz=0.7, yz=0.2, dimensions=3)





More examples on how boxes can be created may be found in the API documentation of the Box class.


Note

All freud boxes are centered at the origin, so for a given box the
range of possible positions is \([-L/2, L/2)\).







          

      

      

    

  

    
      
          
            
  


Compute Classes

Calculations in freud are built around the concept of Compute classes, Python objects that encode a given method and expose it through a compute method.
In general, these methods operate on a system composed of a triclinic box and a NumPy array of particle positions.
The box can be provided as any object that can be interpreted as a freud box (as demonstrated in the examples above).
We can look at the freud.order.Hexatic order parameter calculator as an example:

import freud
positions = ...  # Read positions from trajectory file.
op = freud.order.Hexatic(k=6)
op.compute(
    system=({'Lx': 5, 'Ly': 5, 'dimensions': 2}, positions),
    neighbors=dict(r_max=3)
)

# Plot the value of the order parameter.
from matplotlib import pyplot as plt
plt.hist(np.absolute(op.particle_order))





Here, we are calculating the hexatic order parameter, then using Matplotlib to plot.
The freud.order.Hexatic class constructor accepts a single argument k, which represents the periodicity of the calculation.
If you’re unfamiliar with this order parameter, the most important piece of information here is that many compute methods in freud require parameters that are provided when the Compute class is constructed.

To calculate the order parameter we call compute, which takes two arguments, a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (box, points) and a dict [https://docs.python.org/3/library/stdtypes.html#dict].
We first focus on the first argument.
The box is any object that can be coerced into a freud.box.Box as described in the previous section; in this case, we use a dictionary to specify a square (2-dimensional) box.
The points must be anything that can be coerced into a 2-dimensional NumPy array of shape (N, 3)
In general, the points may be provided as anything that can be interpreted as an \(N\times 3\) list of positions; for more details on valid inputs here, see numpy.asarray() [https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray].
Note that because the hexatic order parameter is designed for two-dimensional systems, the points must be provided of the form [x, y, 0] (i.e. the z-component must be 0).
We’ll go into more detail about the (box, points) tuple soon, but for now, it’s sufficient to just think of it as specifying the system of points we want to work with.

Now let’s return to the neighbors argument to compute, which is a dictionary is used to determine which particle neighbors to use.
Many computations in freud (such as the hexatic order parameter) involve the bonds in the system (for example, the average length of bonds or the average number of bonds a given point has).
However, the concept of a bond is sufficiently variable between different calculations; for instance, should points be considered bonded if they are within a certain distance of each other?
Should every point be considered bonded to a fixed number of other points?

To accommodate this variability, freud offers a very general framework by which bonds can be specified, and we’ll go into more details in the next section.
In the example above, we’ve simply informed the Hexatic class that we want it to define bonds as pairs of particles that are less than 3 distance units apart.
We then access the computed order parameter as op.particle_order (we use np.absolute() because the output is a complex number and we just want to see its magnitude).


Accessing Computed Properties

In general, Compute classes expose their calculations using properties [https://docs.python.org/3/library/functions.html#property].
Any parameters to the Compute object (e.g. k in the above example) can typically be accessed as soon as the object is constructed:

op = freud.order.Hexatic(k=6)
op.k





Computed quantities can also be accessed in a similar manner, but only after the compute method is called.
For example:

op = freud.order.Hexatic(k=6)

# This will raise an exception.
op.particle_order

op.compute(
    system=({'Lx': 5, 'Ly': 5, 'dimensions': 2}, positions),
    neighbors=dict(r_max=3)
)

# Now you can access this.
op.particle_order






Note

Most (but not all) of freud’s Compute classes are Python wrappers
around high-performance implementations in C++. As a result, none of the
data or the computations is actually stored in the Python object. Instead,
the Python object just stores an instance of the C++ object that actually
owns all its data, performs calculations, and returns computed quantities
to the user. Python properties provide a nice way to hide this logic so
that the Python code involves just a few lines.



Compute objects is that they can be used many times to calculate quantities, and the most recently calculated output can be accessed through the property.
If you need to perform a series of calculations and save all the data, you can also easily do that:

# Recall that lists of length 2 automatically convert to 2D freud boxes.
box = [5, 5]

op = freud.order.Hexatic(k=6)

# Assuming that we have a list of Nx3 NumPy arrays that represents a
# simulation trajectory, we can loop over it and calculate the order
# parameter values in sequence.
trajectory  = ...  # Read trajectory file into a list of positions by frame.
hexatic_values = []
for points in trajectory:
    op.compute(system=(box, points), neighbors=dict(r_max=3))
    hexatic_values.append(op.particle_order)





To make using freud as simple as possible, all Compute classes are designed to return self when compute is called.
This feature enables a very concise method-chaining idiom in freud where computed properties are accessed immediately:

particle_order = freud.order.Hexatic(k=6).compute(
    system=(box, points)).particle_order











          

      

      

    

  

    
      
          
            
  


Finding Neighbors

Now that you’ve been introduced to the basics of interacting with freud, let’s dive into the central feature of freud: efficiently and flexibly finding neighbors in periodic systems.


Problem Statement


Neighbor-Based Calculations

As discussed in the previous section, a central task in many of the computations in freud is finding particles’ neighbors.
These calculations typically only involve a limited subset of a particle’s neighbors that are defined as characterizing its local environment.
This requirement is analogous to the force calculations typically performed in molecular dynamics simulations, where a cutoff radius is specified beyond which pair forces are assumed to be small enough to neglect.
Unlike in simulation, though, many analyses call for different specifications than simply selecting all points within a certain distance.

An important example is the calculation of order parameters, which can help characterize phase transitions.
Such parameters can be highly sensitive to the precise way in which neighbors are selected.
For instance, if a hard distance cutoff is imposed in finding neighbors for the hexatic order parameter, a particle may only be found to have five neighbors when it actually has six neighbors except the last particle is slightly outside the cutoff radius.
To accomodate such differences in a flexible manner, freud allows users to specify neighbors in a variety of ways.




Finding Periodic Neighbors

[image: ../../_images/PeriodicBoundaryConditions.png]
Finding neighbors in periodic systems is significantly more challenging than in aperiodic systems.
To illustrate the difference, consider the figure above, where the black dashed line indicates the boundaries of the system.
If this system were aperiodic, the three nearest neighbors for point 1 would be points 5, 6, and 7.
However, due to periodicity, point 2 is actually closer to point 1 than any of the others if you consider moving straight through the top (or equivalently, the bottom) boundary.
Although many tools provide efficient implementations of algorithms for finding neighbors in aperiodic systems, they seldom generalize to periodic systems.
Even more rare is the ability to work not just in cubic periodic systems, which are relatively tractable, but in arbitrary triclinic geometries as described in Periodic Boundary Conditions.
This is precisely the type of calculation freud is designed for.






Neighbor Querying

To understand how Compute classes find neighbors in freud, it helps to start by learning about freud’s neighbor finding classes directly.
Note that much more detail on this topic is available in the Query API topic guide; in this section we will restrict ourselves to a higher-level overview.
For our demonstration, we will make use of the freud.locality.AABBQuery class, which implements one fast method for periodic neighbor finding.
The primary mode of interfacing with this class (and other neighbor finding classes) is through the query interface.

import numpy as np
import freud

# As an example, we randomly generate 100 points in a 10x10x10 cubic box.
L = 10
num_points = 100

# We shift all points into the expected range for freud.
points = np.random.rand(num_points)*L - L/2
box = freud.box.Box.cube(L)
aq = freud.locality.AABBQuery(box, points)

# Now we generate a smaller sample of points for which we want to find
# neighbors based on the original set.
query_points = np.random.rand(num_points/10)*L - L/2
distances = []

# Here, we ask for the 4 nearest neighbors of each point in query_points.
for bond in aq.query(query_points, dict(num_neighbors=4)):
    # The returned bonds are tuples of the form
    # (query_point_index, point_index, distance). For instance, a bond
    # (1, 3, 0.2) would indicate that points[3] was one of the 4 nearest
    # neighbors for query_points[1], and that they are separated by a
    # distance of 0.2
    # (i.e. np.linalg.norm(query_points[1] - points[3]) == 2).
    distances.append(bond[2])

avg_distance = np.mean(distances)





Let’s dig into this script a little bit.
Our first step is creating a set of 100 points in a cubic box.
Note that the shifting done in the code above could also be accomplished using the Box.wrap method like so: box.wrap(np.random.rand(num_points)*L).
The result would appear different, because if plotted without considering periodicity, the points would range from -L/2 to L/2 rather than from 0 to L.
However, these two sets of points would be equivalent in a periodic system.

We then generate an additional set of query_points and ask for neighbors using the query method.
This function accepts two arguments: a set of points, and a dict [https://docs.python.org/3/library/stdtypes.html#dict] of query arguments.
Query arguments are a central concept in freud and represent a complete specification of the set of neighbors to be found.
In general, the most common forms of queries are those requesting either a fixed number of neighbors, as in the example above, or those requesting all neighbors within a specific distance.
For example, if we wanted to rerun the above example but instead find all bonds of length less than or equal to 2, we would simply replace the for loop above with:

for bond in aq.query(query_points, dict(r_max=2)):
    distances.append(bond[2])





Query arguments constitute a powerful method for specifying a query request.
Many query arguments may be combined for more specific purposes.
A common use-case is finding all neighbors within a single set of points (i.e. setting query_points = points in the above example).
In this situation, however, it is typically not useful for a point to find itself as a neighbor since it is trivially the closest point to itself and falls within any cutoff radius.
To avoid this, we can use the exclude_ii query argument:

query_points = points
for bond in aq.query(query_points, dict(num_neighbors=4, exclude_ii=True)):
    pass





The above example will find the 4 nearest neighbors to each point, excepting the point itself.
A complete description of valid query arguments can be found in Query API.




Neighbor Lists

Query arguments provide a simple but powerful language with which to express neighbor finding logic.
Used in the manner shown above, query can be used to express many calculations in a very natural, Pythonic way.
By itself, though, the API shown above is somewhat restrictive because the output of query is a generator [https://docs.python.org/3/glossary.html#term-generator].
If you aren’t familiar with generators, the important thing to know is that they can be looped over, but only once.
Unlike objects like lists, which you can loop over as many times as you like, once you’ve looped over a generator once, you can’t start again from the beginning.

In the examples above, this wasn’t a problem because we simply iterated over the bonds once for a single calculation.
However, in many practical cases we may need to reuse the set of neighbors multiple times.
A simple solution would be to simply to store the bonds into a list as we loop over them.
However, because this is such a common use-case, freud provides its own containers for bonds: the freud.locality.NeighborList.

Queries can easily be used to generate NeighborList objects using their toNeighborList method:

query_result = aq.query(query_points, dict(num_neighbors=4, exclude_ii))
nlist = query_result.toNeighborList()





The resulting object provides a persistent container for bond data.
Using NeighborLists, our original example might instead look like this:

import numpy as np
import freud

L = 10
num_points = 100

points = np.random.rand(num_points)*L - L/2
box = freud.box.Box.cube(L)
aq = freud.locality.AABBQuery(box, points)

query_points = np.random.rand(num_points/10)*L - L/2
distances = []

# Here, we ask for the 4 nearest neighbors of each point in query_points.
query_result = aq.query(query_points, dict(num_neighbors=4)):
nlist = query_result.toNeighborList()
for (i, j) in nlist:
    # Note that we have to wrap the bond vector before taking the norm;
    # this is the simplest way to compute distances in a periodic system.
    distances.append(np.linalg.norm(box.wrap(query_points[i] - points[j])))

avg_distance = np.mean(distances)





Note that in the above example we looped directly over the nlist and recomputed distances.
However, the query_result contained information about distances: here’s how we access that through the nlist:

assert np.all(nlist.distances == distances)





The indices are also accessible through properties, or through a NumPy-like slicing interface:

assert np.all(nlist.query_point_indices == nlist[:, 0])
assert np.all(nlist.point_indices == nlist[:, 1])





Note that the query_points are always in the first column, while the points are in the second column.
freud.locality.NeighborList objects also store other properties; for instance, they may assign different weights to different bonds.
This feature can be used by, for example, freud.order.Steinhardt, which is typically used for calculating Steinhardt order parameters [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.28.784], a standard tool for characterizing crystalline order.
When provided appropriately weighted neighbors, however, the class instead computes Minkowski structure metrics [https://iopscience.iop.org/article/10.1088/1367-2630/15/8/083028/meta], which are much more sensitive measures that can differentiate a wider array of crystal structures.







          

      

      

    

  

    
      
          
            
  


Pair Computations

Some computations in freud do not depend on bonds at all.
For example, freud.density.GaussianDensity creates a “continuous equivalent” of a system of points by placing normal distributions at each point’s location to smear out its position, then summing the value of these distributions at a set of fixed grid points.
This calculation can be quite useful because it allows the application of various analysis tools like fast Fourier transforms, which require regular grids.
For the purposes of this tutorial, however, the importance of this class is that it is an example of a calculation where neighbors are unimportant: the calculation is performed on a per-point basis only.

The much more common pattern in freud, though, is that calculations involve the local neighborhoods of points.
To support efficient, flexible computations of such quantities, various Compute classes essentially expose the same API as the query interface demonstrated in the previous section.
These PairCompute classes are designed to mirror the querying functionality of freud as closely as possible.

As an example, let’s consider freud.density.LocalDensity, which calculates the density of points in the local neighborhood of each point.
Adapting our code from the previous section, the simplest usage of this class would be as follows:

import numpy as np
import freud

L = 10
num_points = 100

points = np.random.rand(num_points)*L - L/2
box = freud.box.Box.cube(L)

# r_max specifies how far to search around each point for neighbors
r_max = 2

# For systems where the points represent, for instance, particles with a
# specific size, the diameter is used to add fractional volumes for
# neighbors that would be overlapping the sphere of radius r_max around
# each point.
diameter = 0.001

ld = freud.density.LocalDensity(r_max, diameter)
ld.compute(system=(box, points))

# Access the density.
ld.density





Using the same example system we’ve been working with so far, we’ve now calculated an estimate for the number of points in the neighborhood of each point.
Since we already told the computation how far to search for neighbors based on r_max, all we had to do was pass a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (box, points) to compute indicate where the points were located.


Binary Systems

Imagine that instead of a single set of points, we actually had two different types of points and we were interested in finding the density of one set of points in the vicinity of the other.
In that case, we could modify the above calculation as follows:

import numpy as np
import freud
L = 10
num_points = 100
points = np.random.rand(num_points)*L - L/2
query_points = np.random.rand(num_points/10)*L - L/2

r_max = 2
diameter = 0.001

ld = freud.density.LocalDensity(r_max, diameter)
ld.compute(system=(box, points), query_points=query_points)

# Access the density.
ld.density





The choice of names names here is suggestive of exactly what this calculation is now doing.
Internally, freud.density.LocalDensity will search for all points that are within the cutoff distance r_max of every query_point (essentially using the query interface we introduced previously) and use that to calculate ld.density.
Note that this means that ld.density now contains densities for every query_point, i.e. it is of length 10, not 100.
Moreover, recall that one of the features of the querying API is the specification of whether or not to count particles as their own neighbors.
PairCompute classes will attempt to make an intelligent determination of this for you; if you do not pass in a second set of query_points, they will assume that you are computing with a single set of points and automatically exclude self-neighbors, but otherwise all neighbors will be included.

So far, we have included all points within a fixed radius; however, one might instead wish to consider the density in some shell, such as the density between 1 and 2 distance units away.
To address this need, you could simply adapt the call to compute above as follows:

ld.compute(system=(box, points), query_points=query_points,
           neighbors=dict(r_max=2, r_min=1))





The neighbors argument to PairCompute classes allows users to specify arbitary query arguments, making it possible to easily modify freud calculations on-the-fly.
The neighbors argument is actually more general than query arguments you’ve seen so far: if query arguments are not precise enough to specify the exact set of neighbors you want to compute with, you can instead provide a NeighborList directly

ld.compute(system=(box, points), query_points=query_points,
           neighbors=nlist)





This feature allows users essentially arbitrary flexibility to specify the bonds that should be included in any bond-based computation.
A common use-case for this is constructing a NeighborList using freud.locality.Voronoi; Voronoi constructions provide a powerful alternative method of defining neighbor relationships that can improve the accuracy and robustness of certain calculations in freud.

You may have noticed in the last example that all the arguments are specified using keyword arguments.
As the previous examples have attempted to show, the query_points argument defines a second set of points to be used when performing calculations on binary systems, while the neighbors argument is how users can specify which neighbors to consider in the calculation.

The system argument is what, to this point, we have been specifying as a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (box, points).
However, we don’t have to use this tuple.
Instead, we can pass in any freud.locality.NeighborQuery, the central class in freud’s querying infrastructure.
In fact, you’ve already seen examples of freud.locality.NeighborQuery: the freud.locality.AABBQuery object that we originally used to find neighbors.
There are also a number of other input types that can be converted via freud.locality.NeighborQuery.from_system(), see also Reading Simulation Data for freud.
Since these objects all contain a freud.box.Box and a set of points, they can be directly passed to computations:

aq = freud.locality.AABBQuery(box, points)
ld.compute(system=aq, query_points=query_points, neighbors=nlist)





For more information on why you might want to use freud.locality.NeighborQuery objects instead of the tuples, see Using freud Efficiently.
For now, just consider this to be a way in which you can simplify your calls to many freud computes in one script by storing (box, points) into another objects.

You’ve now covered the most important information needed to use freud!
To recap, we’ve discussed how freud handles periodic boundary conditions, the structure and usage of Compute classes, and methods for finding and performing calculations with pairs of neighbors.
For more detailed information on specific methods in freud, see the Examples page or look at the API documentation for specific modules.







          

      

      

    

  

    
      
          
            
  


Examples

Examples are provided as Jupyter [https://jupyter.org/] notebooks in a separate
freud-examples [https://github.com/glotzerlab/freud-examples] repository.
These notebooks may be launched interactively on Binder [https://mybinder.org/v2/gh/glotzerlab/freud-examples/master?filepath=index.ipynb]
or downloaded and run on your own system.
Visualization of data is done via Matplotlib [https://matplotlib.org/] and Bokeh [https://bokeh.pydata.org/], unless otherwise noted.


Key concepts

There are a few critical concepts, algorithms, and data structures that are central to all of freud.
The freud.box.Box class defines the concept of a periodic simulation box, and the freud.locality module defines methods for finding nearest neighbors of particles.
Since both of these are used throughout freud, we recommend reading the Tutorial first, before delving into the workings of specific freud analysis modules.



	freud.box.Box

	freud.locality.PeriodicBuffer: Unit Cell RDF

	freud.locality.Voronoi








Analysis Modules

These introductory examples showcase the functionality of specific modules in freud, showing how they can be used to perform specific types of analyses of simulations.



	freud.cluster.Cluster and freud.cluster.ClusterProperties

	freud.density.CorrelationFunction

	freud.density.GaussianDensity

	freud.density.LocalDensity

	freud.density.RDF: Accumulating g(r) for a Fluid

	freud.density.RDF: Choosing Bin Widths

	freud.environment.AngularSeparation

	freud.environment.BondOrder

	freud.environment.EnvironmentCluster

	freud.environment.LocalDescriptors: Steinhardt Order Parameters from Scratch

	freud.interface.Interface

	freud.order.Hexatic

	freud.order.Nematic

	freud.order.Steinhardt

	freud.pmft.PMFTXY

	freud.pmft.PMFTXYZ: Shifting Example








Example Analyses

The examples below go into greater detail about specific applications of freud and use cases that its analysis methods enable, such as user-defined analyses, machine learning, and data visualization.



	Implementing Common Neighbor Analysis as a custom method

	Analyzing simulation data from HOOMD-blue at runtime

	Analyzing GROMACS data with freud and MDTraj: Computing an RDF for Water

	Analyzing data from LAMMPS

	Using Machine Learning for Structural Identification

	Calculating Strain via Voxelization

	Visualizing analyses with fresnel

	Visualization with plato

	Visualizing 3D Voronoi and Voxelization








Benchmarks

Performance is a central consideration for freud. Below are some benchmarks comparing freud to other tools offering similar analysis methods.



	Benchmarking Neighbor Finding against scipy

	Benchmarking RDF against MDAnalysis











          

      

      

    

  

    
      
          
            
  


freud.box.Box

In this notebook, we demonstrate the basic features of the Box class, including wrapping particles back into the box under periodic boundary conditions. For more information, see the introduction to Periodic Boundary Conditions [https://freud.readthedocs.io/en/stable/tutorial/periodic.html] and the freud.box documentation [https://freud.readthedocs.io/en/stable/box.html].


Creating a Box object

Boxes may be constructed explicitly using all arguments. Such construction is useful when performing ad hoc analyses involving custom boxes. In general, boxes are assumed to be 3D and orthorhombic [https://en.wikipedia.org/wiki/Orthorhombic_crystal_system] unless otherwise specified.


[1]:






import freud.box

# All of the below examples are valid boxes.
box = freud.box.Box(Lx=5, Ly=6, Lz=7, xy=0.5, xz=0.6, yz=0.7, is2D=False)
box = freud.box.Box(1, 3, 2, 0.3, 0.9)
box = freud.box.Box(5, 6, 7)
box = freud.box.Box(5, 6, is2D=True)
box = freud.box.Box(5, 6, xy=0.5, is2D=True)










From another Box object

The simplest case is simply constructing one freud box from another.

Note that all forms of creating boxes aside from the explicit method above use methods defined within the Box class rather than attempting to overload the constructor itself.


[2]:






box = freud.box.Box(1, 2, 3)
box2 = freud.box.Box.from_box(box)
print("The original box: \n\t{}".format(box))
print("The copied box: \n\t{}\n".format(box2))

# Boxes are always copied by value, not by reference
box.Lx = 5
print("The original box is modified: \n\t{}".format(box))
print("The copied box is not: \n\t{}\n".format(box2))

# Note, however, that box assignment creates a new object that
# still points to the original box object, so modifications to
# one are visible on the other.
box3 = box2
print("The new copy: \n\t{}".format(box3))
box2.Lx = 2
print("The new copy after the original is modified: \n\t{}".format(box3))
print("The modified original box: \n\t{}".format(box2))













The original box:
        freud.box.Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)
The copied box:
        freud.box.Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

The original box is modified:
        freud.box.Box(Lx=5.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)
The copied box is not:
        freud.box.Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

The new copy:
        freud.box.Box(Lx=1.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)
The new copy after the original is modified:
        freud.box.Box(Lx=2.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)
The modified original box:
        freud.box.Box(Lx=2.0, Ly=2.0, Lz=3.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)









From a matrix

A box can be constructed directly from the box matrix representation described above using the Box.from_matrix method.


[3]:






# Matrix representation. Note that the box vectors must represent
# a right-handed coordinate system! This translates to requiring
# that the matrix be upper triangular.
box = freud.box.Box.from_matrix([[1, 1, 0], [0, 1, 0.5], [0, 0, 0.5]])
print("This is a 3D box from a matrix: \n\t{}\n".format(box))

# 2D box
box = freud.box.Box.from_matrix([[1, 0, 0], [0, 1, 0], [0, 0, 0]])
print("This is a 2D box from a matrix: \n\t{}\n".format(box))

# Automatic matrix detection using from_box
box = freud.box.Box.from_box([[1, 1, 0], [0, 1, 0.5], [0, 0, 0.5]])
print("The box matrix was automatically detected: \n\t{}\n".format(box))

# Boxes can be numpy arrays as well
import numpy as np
box = freud.box.Box.from_box(np.array([[1, 1, 0], [0, 1, 0.5], [0, 0, 0.5]]))
print("Using a 3x3 numpy array: \n\t{}".format(box))













This is a 3D box from a matrix:
        freud.box.Box(Lx=1.0, Ly=1.0, Lz=0.5, xy=1.0, xz=0.0, yz=1.0, is2D=False)

This is a 2D box from a matrix:
        freud.box.Box(Lx=1.0, Ly=1.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, is2D=True)

The box matrix was automatically detected:
        freud.box.Box(Lx=1.0, Ly=1.0, Lz=0.5, xy=1.0, xz=0.0, yz=1.0, is2D=False)

Using a 3x3 numpy array:
        freud.box.Box(Lx=1.0, Ly=1.0, Lz=0.5, xy=1.0, xz=0.0, yz=1.0, is2D=False)









From a namedtuple or dict

A box can be also be constructed from any object that provides an attribute for Lx, Ly, Lz, xy, xz, and yz (or some subset), such as a namedtuple. This method is suitable for passing in box objects constructed by some other program, for example.


[4]:






from collections import namedtuple
MyBox = namedtuple('mybox', ['Lx', 'Ly', 'Lz', 'xy', 'xz', 'yz'])

box = freud.box.Box.from_box(MyBox(Lx=5, Ly=3, Lz=2, xy=0, xz=0, yz=0))
print("Box from named tuple: \n\t{}\n".format(box))

box = freud.box.Box.from_box(MyBox(Lx=5, Ly=3, Lz=0, xy=0, xz=0, yz=0))
print("2D Box from named tuple: \n\t{}".format(box))













Box from named tuple:
        freud.box.Box(Lx=5.0, Ly=3.0, Lz=2.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

2D Box from named tuple:
        freud.box.Box(Lx=5.0, Ly=3.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, is2D=True)






Similarly, construction is also possible using any object that supports key-value indexing, such as a dict.


[5]:






box = freud.box.Box.from_box(dict(Lx=5, Ly=3, Lz=2))
print("Box from dict: \n\t{}".format(box))













Box from dict:
        freud.box.Box(Lx=5.0, Ly=3.0, Lz=2.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)









From a list

Finally, boxes can be constructed from any simple iterable that provides the elements in the correct order.


[6]:






box = freud.box.Box.from_box((5, 6, 7, 0.5, 0, 0.5))
print("Box from tuple: \n\t{}\n".format(box))

box = freud.box.Box.from_box([5, 6])
print("2D Box from list: \n\t{}".format(box))













Box from tuple:
        freud.box.Box(Lx=5.0, Ly=6.0, Lz=7.0, xy=0.5, xz=0.0, yz=0.5, is2D=False)

2D Box from list:
        freud.box.Box(Lx=5.0, Ly=6.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, is2D=True)









Convenience APIs

We also provide convenience constructors for common geometries, namely square (2D) and cubic (3D) boxes.


[7]:






cube_box = freud.box.Box.cube(L=5)
print("Cubic Box: \n\t{}\n".format(cube_box))

square_box = freud.box.Box.square(L=5)
print("Square Box: \n\t{}".format(square_box))













Cubic Box:
        freud.box.Box(Lx=5.0, Ly=5.0, Lz=5.0, xy=0.0, xz=0.0, yz=0.0, is2D=False)

Square Box:
        freud.box.Box(Lx=5.0, Ly=5.0, Lz=0.0, xy=0.0, xz=0.0, yz=0.0, is2D=True)









Export

If you want to export or display the box, you can export box objects into their matrix or dictionary representations, which provide completely specified descriptions of the box.


[8]:






cube_box = freud.box.Box.cube(L=5)
cube_box.to_matrix()








[8]:







array([[5., 0., 0.],
       [0., 5., 0.],
       [0., 0., 5.]])







[9]:






cube_box.to_dict()








[9]:







{'Lx': 5.0,
 'Ly': 5.0,
 'Lz': 5.0,
 'xy': 0.0,
 'xz': 0.0,
 'yz': 0.0,
 'dimensions': 3}









Using boxes

Given a freud box object, you can query it for all its attributes.


[10]:






box = freud.box.Box.from_matrix([[10, 0, 0], [0, 10, 0], [0, 0, 10]])
print("L_x = {}, L_y = {}, L_z = {}, xy = {}, xz = {}, yz = {}".format(
    box.Lx, box.Ly, box.Lz, box.xy, box.xz, box.yz))

print("The length vector: {}".format(box.L))
print("The inverse length vector: ({:1.2f}, {:1.2f}, {:1.2f})".format(*[L for L in box.L_inv]))













L_x = 10.0, L_y = 10.0, L_z = 10.0, xy = 0.0, xz = 0.0, yz = 0.0
The length vector: [10. 10. 10.]
The inverse length vector: (0.10, 0.10, 0.10)






Boxes also support converting between fractional and absolute coordinates.

Note that the origin in real coordinates is defined at the center of the box. This means the fractional coordinate range \([0, 1]\) maps onto \([-L/2, L/2]\), not \([0, L]\).


[11]:






# Convert from fractional to absolute coordinates.
print(box.make_absolute([[0, 0, 0], [0.5, 0.5, 0.5], [0.8, 0.3, 1]]))
print()

# Convert from fractional to absolute coordinates and back.
print(box.make_fractional(box.make_absolute([[0, 0, 0], [0.5, 0.5, 0.5], [0.8, 0.3, 1]])))













[[-5. -5. -5.]
 [ 0.  0.  0.]
 [ 3. -2.  5.]]

[[0.  0.  0. ]
 [0.5 0.5 0.5]
 [0.8 0.3 1. ]]






Finally (and most critically for enforcing periodicity), boxes support wrapping vectors from outside the box into the box. The concept of periodicity and box wrapping is most easily demonstrated visually.


[12]:






# Construct the box and get points for plotting
Lx = Ly = 10
xy = 0.5
box = freud.box.Box.from_matrix([[Lx, xy*Ly, 0], [0, Ly, 0], [0, 0, 0]])
box.plot()








[12]:







<matplotlib.axes._subplots.AxesSubplot at 0x7f2729d20518>






With periodic boundary conditions, what this actually represents is an infinite set of these boxes tiling space. For example, you can locally picture this box as surrounding by a set of identical boxes.


[13]:






%matplotlib inline
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(9, 6))
box.plot(ax=ax)
for image in [[-1, 0, 0], [1, 0, 0], [0, -1, 0], [0, 1, 0]]:
    box.plot(ax=ax, image=image, linestyle='dashed', color='gray')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_box.Box_25_0.png]




Any particles in the original box will also therefore be seen as existing in all the neighboring boxes.


[14]:






np.random.seed(0)
fractional_coords = np.zeros((5, 3))
fractional_coords[:, :2] = np.random.rand(5, 2)
particles = box.make_absolute(fractional_coords)








[15]:






fig, ax = plt.subplots(figsize=(9, 6))

# Plot the points in the original box.
box.plot(ax=ax)
ax.scatter(particles[:, 0], particles[:, 1])

# Plot particles in each of the periodic boxes.
for image in [[-1, 0, 0], [1, 0, 0], [0, -1, 0], [0, 1, 0]]:
    box.plot(ax=ax, image=image, linestyle='dashed', color='gray')
    particle_images = box.unwrap(particles, image)
    ax.scatter(particle_images[:, 0], particle_images[:, 1])

plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_box.Box_28_0.png]




Box wrapping takes points in the periodic images of a box, and brings them back into the original box. In this context, that means that if we apply wrap to each of the sets of particles plotted above, they should all overlap.


[16]:






fig, axes = plt.subplots(2, 2, figsize=(12, 8))
images = [[-1, 0, 0], [1, 0, 0], [0, -1, 0], [0, 1, 0]]

# Plot particles in each of the periodic boxes.
for ax, image in zip(axes.flatten(), images):
    box.plot(ax=ax)
    box.plot(ax=ax, image=image, linestyle='dashed', color='gray')
    particle_images = box.unwrap(particles, image)
    ax.scatter(particle_images[:, 0],
               particle_images[:, 1],
               label='Images')

    wrapped_particle_images = box.wrap(particle_images)
    ax.scatter(wrapped_particle_images[:, 0],
               wrapped_particle_images[:, 1],
               label='Wrapped')

    ax.tick_params(axis="both", which="both", labelsize=14)
    ax.legend()

plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_box.Box_30_0.png]










          

      

      

    

  

    
      
          
            
  


freud.locality.PeriodicBuffer: Unit Cell RDF

The PeriodicBuffer class is meant to replicate points beyond a single image while respecting box periodicity. This example demonstrates how we can use this to compute the radial distribution function from a sample crystal’s unit cell.


[1]:






%matplotlib inline
import freud
import numpy as np
import matplotlib.pyplot as plt







Here, we create a box to represent the unit cell and put two points inside. We plot the box and points below.


[2]:






box = freud.box.Box(Lx=2, Ly=2, xy=np.sqrt(1/3), is2D=True)
points = np.array([[-0.5, -0.5, 0], [0.5, 0.5, 0]])
system = freud.AABBQuery(box, points)
system.plot(ax=plt.gca())
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_locality.PeriodicBuffer_3_0.png]




Next, we create a PeriodicBuffer instance and have it compute the “buffer” points that lie outside the first periodicity. These positions are stored in the buffer_points attribute. The corresponding buffer_ids array gives a mapping from the index of the buffer particle to the index of the particle it was replicated from, in the original array of points. Finally, the buffer_box attribute returns a larger box, expanded from the original box to contain the replicated points.


[3]:






pbuff = freud.locality.PeriodicBuffer()
pbuff.compute(system=(box, points), buffer=6, images=True)
print(pbuff.buffer_points[:10], '...')













[[ 0.65470022  1.5         0.        ]
 [ 1.80940032  3.5         0.        ]
 [ 2.96410179  5.5         0.        ]
 [-3.96410131 -6.5         0.        ]
 [-2.80940104 -4.49999952  0.        ]
 [-1.65470016 -2.50000048  0.        ]
 [ 1.50000024 -0.5         0.        ]
 [ 2.65470076  1.5         0.        ]
 [ 3.80940032  3.5         0.        ]
 [ 4.96410179  5.5         0.        ]] ...






Below, we plot the original unit cell and the replicated buffer points and buffer box.


[4]:






system.plot(ax=plt.gca())
plt.scatter(pbuff.buffer_points[:, 0], pbuff.buffer_points[:, 1])
pbuff.buffer_box.plot(ax=plt.gca(), linestyle='dashed', color='gray')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_locality.PeriodicBuffer_7_0.png]




Finally, we can plot the radial distribution function (RDF) of this replicated system, using a value of r_max that is larger than the size of the original box. This allows us to see the interaction of the original points with their replicated neighbors from the buffer.


[5]:






rdf = freud.density.RDF(bins=250, r_max=5)
rdf.compute(system=(pbuff.buffer_box, pbuff.buffer_points), query_points=points)
rdf.plot(ax=plt.gca())
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_locality.PeriodicBuffer_9_0.png]








          

      

      

    

  

    
      
          
            
  


freud.locality.Voronoi

The freud.locality.Voronoi class uses voro++ [https://doi.org/10.2172/946741] to compute the Voronoi diagram [https://en.wikipedia.org/wiki/Voronoi_diagram] of a set of points, while respecting periodic boundary conditions (which are not handled by scipy.spatial.Voronoi, documentation [https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Voronoi.html]).

These examples are two-dimensional (with \(z=0\) for all particles) for simplicity, but the Voronoi class works for both 2D and 3D data.


[1]:






import numpy as np
import freud
import matplotlib
import matplotlib.pyplot as plt







First, we generate some sample points.


[2]:






points = np.array([
    [-0.5, -0.5, 0],
    [0.5, -0.5, 0],
    [-0.5, 0.5, 0],
    [0.5, 0.5, 0]])
plt.scatter(points[:, 0], points[:, 1])
plt.title('Points')
plt.xlim((-1, 1))
plt.ylim((-1, 1))
plt.gca().set_aspect('equal')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_locality.Voronoi_3_0.png]




Now we create a box and a Voronoi compute object.


[3]:






L = 2
box = freud.box.Box.square(L)
voro = freud.locality.Voronoi()







Next, we use the compute method to determine the Voronoi polytopes (cells) and the polytopes property to return their coordinates. Note that we use freud’s method chaining here, where a compute method returns the compute object.


[4]:






cells = voro.compute((box, points)).polytopes
print(cells)













[array([[-1., -1.,  0.],
       [ 0., -1.,  0.],
       [ 0.,  0.,  0.],
       [-1.,  0.,  0.]]), array([[ 0., -1.,  0.],
       [ 1., -1.,  0.],
       [ 1.,  0.,  0.],
       [ 0.,  0.,  0.]]), array([[-1.,  0.,  0.],
       [ 0.,  0.,  0.],
       [ 0.,  1.,  0.],
       [-1.,  1.,  0.]]), array([[0., 0., 0.],
       [1., 0., 0.],
       [1., 1., 0.],
       [0., 1., 0.]])]






The Voronoi class has built-in plotting methods for 2D systems.


[5]:






plt.figure()
ax = plt.gca()
voro.plot(ax=ax)
ax.scatter(points[:, 0], points[:, 1], s=10, c='k')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_locality.Voronoi_9_0.png]




This also works for more complex cases, such as this hexagonal lattice.


[6]:






def hexagonal_lattice(rows=3, cols=3, noise=0, seed=None):
    if seed is not None:
        np.random.seed(seed)
    # Assemble a hexagonal lattice
    points = []
    for row in range(rows*2):
        for col in range(cols):
            x = (col + (0.5 * (row % 2)))*np.sqrt(3)
            y = row*0.5
            points.append((x, y, 0))
    points = np.asarray(points)
    points += np.random.multivariate_normal(mean=np.zeros(3), cov=np.eye(3)*noise, size=points.shape[0])
    # Set z=0 again for all points after adding Gaussian noise
    points[:, 2] = 0

    # Wrap the points into the box
    box = freud.box.Box(Lx=cols*np.sqrt(3), Ly=rows, is2D=True)
    points = box.wrap(points)
    return box, points








[7]:






# Compute the Voronoi diagram and plot
box, points = hexagonal_lattice()
voro = freud.locality.Voronoi()
voro.compute((box, points))
voro








[7]:






[image: ../../../_images/gettingstarted_examples_module_intros_locality.Voronoi_12_0.png]




For noisy data, we see that the Voronoi diagram can change substantially. We perturb the positions with 2D Gaussian noise. Coloring by the number of sides of each Voronoi cell, we can see patterns in the defects: 5-gons and 7-gons tend to pair up.


[8]:






# Compute the Voronoi diagram
box, points = hexagonal_lattice(rows=12, cols=8, noise=0.03, seed=2)
voro = freud.locality.Voronoi()
voro.compute((box, points))

# Plot Voronoi with points and a custom cmap
plt.figure()
ax = plt.gca()
voro.plot(ax=ax, cmap='RdBu')
ax.scatter(points[:, 0], points[:, 1], s=2, c='k')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_locality.Voronoi_14_0.png]




We can also compute the volumes of the Voronoi cells. Here, we plot them as a histogram:


[9]:






plt.hist(voro.volumes)
plt.title('Voronoi cell volumes')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_locality.Voronoi_16_0.png]




The Voronoi class also computes a freud.locality.NeighborList, where particles are neighbors if they share an edge in the Voronoi diagram. The NeighborList effectively represents the bonds in the Delaunay triangulation [https://en.wikipedia.org/wiki/Delaunay_triangulation]. The neighbors are weighted by the length (in 2D) or area (in 3D) between them. The neighbor weights are stored in voro.nlist.weights.


[10]:






nlist = voro.nlist
line_data = np.asarray([[points[i],
                         points[i] + box.wrap(points[j] - points[i])]
                        for i, j in nlist])[:, :, :2]
line_collection = matplotlib.collections.LineCollection(line_data, alpha=0.2)
plt.figure()
ax = plt.gca()
voro.plot(ax=ax, cmap='RdBu')
ax.add_collection(line_collection)
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_locality.Voronoi_18_0.png]








          

      

      

    

  

    
      
          
            
  


freud.cluster.Cluster and freud.cluster.ClusterProperties

The freud.cluster module determines clusters of points and computes cluster quantities like centers of mass, gyration tensors, and radii of gyration. The example below generates random points, and shows that they form clusters. This case is two-dimensional (with \(z=0\) for all particles) for simplicity, but the cluster module works for both 2D and 3D simulations.


[1]:






import numpy as np
import freud
import matplotlib.pyplot as plt







First, we generate a box and random points to cluster.


[2]:






box = freud.Box.square(L=6)
points = np.empty(shape=(0, 2))
for center_point in [(-1.8, 0), (1.5, 1.5), (-0.8, -2.8), (1.5, 0.5)]:
    points = np.concatenate(
        (points, np.random.multivariate_normal(mean=center_point, cov=0.08*np.eye(2), size=(100,))))
points = np.hstack((points, np.zeros((points.shape[0], 1))))
points = box.wrap(points)
system = freud.AABBQuery(box, points)
system.plot(ax=plt.gca(), s=10)
plt.title('Raw points before clustering', fontsize=20)
plt.gca().tick_params(axis='both', which='both', labelsize=14, size=8)
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_cluster.Cluster_3_0.png]




Now we create a box and a cluster compute object.


[3]:






cl = freud.cluster.Cluster()







Next, we use the computeClusters method to determine clusters and the clusterIdx property to return their identities. Note that we use freud’s method chaining here, where a compute method returns the compute object.


[4]:






cl.compute(system, neighbors={'r_max': 1.0})
print(cl.cluster_idx)













[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]







[5]:






fig, ax = plt.subplots(1, 1, figsize=(9, 6))
for cluster_id in range(cl.num_clusters):
    cluster_system = freud.AABBQuery(system.box, system.points[cl.cluster_keys[cluster_id]])
    cluster_system.plot(ax=ax, s=10, label="Cluster {}".format(cluster_id))
    print("There are {} points in cluster {}.".format(len(cl.cluster_keys[cluster_id]), cluster_id))

ax.set_title('Clusters identified', fontsize=20)
ax.legend(loc='best', fontsize=14)
ax.tick_params(axis='both', which='both', labelsize=14, size=8)
plt.show()













There are 200 points in cluster 0.
There are 100 points in cluster 1.
There are 100 points in cluster 2.











[image: ../../../_images/gettingstarted_examples_module_intros_cluster.Cluster_8_1.png]




We may also compute the clusters’ centers of mass and gyration tensor using the ClusterProperties class.


[6]:






clp = freud.cluster.ClusterProperties()
clp.compute(system, cl.cluster_idx);







Plotting these clusters with their centers of mass, with size proportional to the number of clustered points:


[7]:






fig, ax = plt.subplots(1, 1, figsize=(9, 6))

for i in range(cl.num_clusters):
    cluster_system = freud.AABBQuery(system.box, system.points[cl.cluster_keys[i]])
    cluster_system.plot(ax=ax, s=10, label="Cluster {}".format(i))

for i, c in enumerate(clp.centers):
    ax.scatter(c[0], c[1], s=len(cl.cluster_keys[i]),
               label="Cluster {} Center".format(i))

plt.title('Center of mass for each cluster', fontsize=20)
plt.legend(loc='best', fontsize=14)
plt.gca().tick_params(axis='both', which='both', labelsize=14, size=8)
plt.gca().set_aspect('equal')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_cluster.Cluster_12_0.png]




The 3x3 gyration tensors \(G\) can also be computed for each cluster. For this two-dimensional case, the \(z\) components of the gyration tensor are zero. The gyration tensor can be used to determine the principal axes of the cluster and radius of gyration along each principal axis. Here, we plot the gyration tensor’s eigenvectors with length corresponding to the square root of the eigenvalues (the singular values).


[8]:






fig, ax = plt.subplots(1, 1, figsize=(9, 6))

for i in range(cl.num_clusters):
    cluster_system = freud.AABBQuery(system.box, system.points[cl.cluster_keys[i]])
    cluster_system.plot(ax=ax, s=10, label="Cluster {}".format(i))

for i, c in enumerate(clp.centers):
    ax.scatter(c[0], c[1], s=len(cl.cluster_keys[i]),
               label="Cluster {} Center".format(i))

for cluster_id in range(cl.num_clusters):
    com = clp.centers[cluster_id]
    G = clp.gyrations[cluster_id]
    evals, evecs = np.linalg.eig(G[:2, :2])
    arrows = np.sqrt(evals) * evecs
    for arrow in arrows.T:
        plt.arrow(com[0], com[1], arrow[0], arrow[1], width=0.05, color='k')

plt.title('Eigenvectors of the gyration tensor for each cluster', fontsize=20)
plt.legend(loc='best', fontsize=14)
ax.tick_params(axis='both', which='both', labelsize=14, size=8)
ax.set_aspect('equal')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_cluster.Cluster_14_0.png]








          

      

      

    

  

    
      
          
            
  


freud.density.CorrelationFunction


Orientational Ordering in 2D

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of particles with other particles. This example shows how correlation functions [https://en.wikipedia.org/wiki/Correlation_function_(statistical_mechanics)] can be used to measure orientational order in 2D.


[1]:






import numpy as np
import freud
import matplotlib.pyplot as plt
import matplotlib.cm
from matplotlib.colors import Normalize







This helper function will make plots of the data we generate in this example.


[2]:






def plot_data(title, points, angles, values, box, cf, s=200):
    cmap = matplotlib.cm.viridis
    norm = Normalize(vmin=-np.pi/4, vmax=np.pi/4)
    plt.figure(figsize=(16, 6))
    plt.subplot(121)
    for point, angle, value in zip(points, angles, values):
        plt.scatter(point[0], point[1], marker=(4, 0, np.rad2deg(angle)+45),
                    edgecolor='k', c=[cmap(norm(angle))], s=s)
    plt.title(title)
    plt.gca().set_xlim([-box.Lx/2, box.Lx/2])
    plt.gca().set_ylim([-box.Ly/2, box.Ly/2])
    plt.gca().set_aspect('equal')
    sm = plt.cm.ScalarMappable(cmap='viridis', norm=norm)
    sm.set_array(angles)
    plt.colorbar(sm)
    plt.subplot(122)
    plt.title('Orientation Spatial Autocorrelation Function')
    cf.plot(ax=plt.gca())
    plt.xlabel(r'$r$')
    plt.ylabel(r'$C(r)$')
    plt.show()







First, let’s generate a 2D structure with perfect orientational order and slight positional disorder (the particles are not perfectly on a grid, but they are perfectly aligned). The color of the particles corresponds to their angle of rotation, so all the particles will be the same color to begin with.

We create a freud.density.CorrelationFunction object to compute the correlation functions. Given a particle orientation \(\theta\), we compute its complex orientation value (the quantity we are correlating) as \(s = e^{4i\theta}\), to account for the fourfold symmetry of the particles. We will compute the correlation function \(C(r) = \left\langle s^*_1(0) \cdot s_2(r) \right\rangle\) by taking the average over all particle pairs and binning the results into a histogram by the
distance \(r\) between the particles.

When we compute the correlations between particles, the complex conjugate of the values array is used internally for the query points. This way, if \(\theta_1\) is close to \(\theta_2\), then we get \(\left(e^{4i\theta_1}\right)^* \cdot \left(e^{4i\theta_2}\right) = e^{4i(\theta_2-\theta_1)} \approx e^0 = 1\).

This system has perfect spatial correlation of the particle orientations, so we see \(C(r) = 1\) for all values of \(r\).


[3]:






def make_particles(L, repeats):
    uc = freud.data.UnitCell.square()
    return uc.generate_system(num_replicas=repeats, scale=L/repeats, sigma_noise=5e-3*L)

# Make a small system
box, points = make_particles(L=5, repeats=20)

# All the particles begin with their orientation at 0
angles = np.zeros(len(points))
values = np.array(np.exp(angles * 4j))

# Create the CorrelationFunction compute object and compute the correlation function
cf = freud.density.CorrelationFunction(bins=25, r_max=box.Lx/2.01)
cf.compute(system=(box, points), values=values,
           query_points=points, query_values=values)


plot_data('Particles before introducing Orientational Disorder',
          points, angles, values, box, cf)












[image: ../../../_images/gettingstarted_examples_module_intros_density.CorrelationFunction_5_0.png]




Now we will generate random angles from \(-\frac{\pi}{4}\) to \(\frac{\pi}{4}\), which orients our squares randomly. The four-fold symmetry of the squares means that the space of unique angles is restricted to a range of \(\frac{\pi}{2}\). Again, we compute a complex value for each particle, \(s = e^{4i\theta}\).

Because we have purely random orientations, we expect no spatial correlations in the plot above. As we see, \(C(r) \approx 0\) for all \(r\).


[4]:






# Change the angles to values randomly drawn from a uniform distribution
angles = np.random.uniform(-np.pi/4, np.pi/4, size=len(points))
values = np.exp(angles * 4j)

# Recompute the correlation functions
cf.compute(system=(box, points), values=values,
           query_points=points, query_values=values)

plot_data('Particles with Orientational Disorder',
          points, angles, values, box, cf)












[image: ../../../_images/gettingstarted_examples_module_intros_density.CorrelationFunction_7_0.png]




The plot below shows what happens when we intentionally introduce a correlation length by adding a spatial pattern to the particle orientations. At short distances, the correlation is very high. As \(r\) increases, the oppositely-aligned part of the pattern some distance away causes the correlation to drop.


[5]:






# Use angles that vary spatially in a pattern
angles = np.pi/4 * np.cos(2*np.pi*points[:, 0]/box.Lx)
values = np.exp(angles * 4j)

# Recompute the correlation functions
cf.compute(system=(box, points), values=values,
           query_points=points, query_values=values)

plot_data('Particles with Spatially Correlated Orientations',
          points, angles, values, box, cf)












[image: ../../../_images/gettingstarted_examples_module_intros_density.CorrelationFunction_9_0.png]




In the larger system shown below, we see the spatial autocorrelation rise and fall with damping oscillations.


[6]:






# Make a large system
box, points = make_particles(L=10, repeats=40)

# Use angles that vary spatially in a pattern
angles = np.pi/4 * np.cos(8*np.pi*points[:, 0]/box.Lx)
values = np.exp(angles * 4j)

# Create a CorrelationFunction compute object
cf = freud.density.CorrelationFunction(bins=25, r_max=box.Lx/2.01)
cf.compute(system=(box, points), values=values,
           query_points=points, query_values=values)

plot_data('Larger System with Spatially Correlated Orientations',
          points, angles, values, box, cf, s=80)












[image: ../../../_images/gettingstarted_examples_module_intros_density.CorrelationFunction_11_0.png]










          

      

      

    

  

    
      
          
            
  


freud.density.GaussianDensity

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of particles with other particles. In this notebook, we demonstrate freud’s Gaussian density calculation, which provides a way to interpolate particle configurations onto a regular grid in a meaningful way that can then be processed by other algorithms that require regularity, such as a Fast Fourier Transform [https://en.wikipedia.org/wiki/Fft].


[1]:






import numpy as np
from scipy import stats
import freud
import matplotlib.pyplot as plt







To illustrate the basic concept, consider a toy example: a simple set of point particles with unit mass on a line. For analytical purposes, the standard way to accomplish this would be using Dirac delta functions [https://en.wikipedia.org/wiki/Dirac_delta_function].


[2]:






n_p = 10000
np.random.seed(129)
x = np.linspace(0, 1, n_p)
y = np.zeros(n_p)
points = np.random.rand(10)
y[(points*n_p).astype('int')] = 1
plt.plot(x, y);
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.GaussianDensity_3_0.png]




However, delta functions can be cumbersome to work with, so we might instead want to smooth out these particles. One option is to instead represent particles as Gaussians centered at the location of the points. In that case, the total particle density at any point in the interval \([0, 1]\) represented above would be based on the sum of the densities of those Gaussians at those points.


[3]:






# Note that we use a Gaussian with a small standard deviation
# to emphasize the differences on this small scale
dists = [stats.norm(loc=i, scale=0.1) for i in points]
y_gaussian = 0
for dist in dists:
    y_gaussian += dist.pdf(x)
plt.plot(x, y_gaussian);
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.GaussianDensity_5_0.png]




The goal of the GaussianDensity class is to perform the same interpolation for points on a 2D or 3D grid, accounting for Box periodicity.


[4]:






N = 1000  # Number of points
L = 10  # Box length

box, points = freud.data.make_random_system(L, N, is2D=True, seed=0)
aq = freud.AABBQuery(box, points)
gd = freud.density.GaussianDensity(L*L, L/3, 1)
gd.compute(aq)

fig, axes = plt.subplots(1, 2, figsize=(14, 6))
aq.plot(ax=axes[0])
gd.plot(ax=axes[1])
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.GaussianDensity_7_0.png]




The effects are much more striking if we explicitly construct our points to be centered at certain regions.


[5]:






N = 1000  # Number of points
L = 10  # Box length
box = freud.box.Box.square(L)
centers = np.array([[L/4, L/4, 0],
                    [-L/4, L/4, 0],
                    [L/4, -L/4, 0],
                    [-L/4, -L/4, 0]])

points = []
for center in centers:
    points.append(np.random.multivariate_normal(center, cov=np.diag([1, 1, 0]), size=(int(N/4),)))
points = box.wrap(np.concatenate(points))
aq = freud.AABBQuery(box, points)

gd = freud.density.GaussianDensity(L*L, L/3, 1)
gd.compute(aq)

fig, axes = plt.subplots(1, 2, figsize=(14, 6))
aq.plot(ax=axes[0])
gd.plot(ax=axes[1])
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.GaussianDensity_9_0.png]








          

      

      

    

  

    
      
          
            
  


freud.density.LocalDensity

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of particles with other particles. In this notebook, we demonstrate freud’s local density calculation, which can be used to characterize the particle distributions in some systems. In this example, we consider a toy example of calculating the particle density in the vicinity of a set of other points. This can be visualized as, for example, billiard balls on a table with certain
regions of the table being stickier than others. In practice, this method could be used for analyzing, e.g, binary systems to determine how densely one species packs close to the surface of the other.


[1]:






import numpy as np
import freud
import matplotlib.pyplot as plt
from matplotlib import patches








[2]:






# Define some helper plotting functions.
def add_patches(ax, points, radius=1, fill=False, color="#1f77b4", ls="solid", lw=None):
    """Add set of points as patches with radius to the provided axis"""
    for pt in points:
        p = patches.Circle(pt, fill=fill, linestyle=ls, radius=radius,
                           facecolor=color, edgecolor=color, lw=lw)
        ax.add_patch(p)

def plot_lattice(box, points, radius=1, ls="solid", lw=None):
    """Helper function for plotting points on a lattice."""
    fig, ax = plt.subplots(1, 1, figsize=(9, 9))
    box.plot(ax=ax)
    add_patches(ax, points, radius, ls=ls, lw=lw)
    return fig, ax







Let us consider a set of regions on a square lattice.


[3]:






area = 2
radius = np.sqrt(area/np.pi)
spot_area = area*100
spot_radius = np.sqrt(spot_area/np.pi)
num = 6
scale = num*4
uc = freud.data.UnitCell(freud.Box.square(1), [[0.5, 0.5, 0]])
box, spot_centers = uc.generate_system(num, scale=scale)
fig, ax = plot_lattice(box, spot_centers, spot_radius, ls="dashed", lw=2.5)
plt.tick_params(axis="both", which="both", labelsize=14)
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.LocalDensity_4_0.png]




Now let’s add a set of points to this box. Points are added by drawing from a normal distribution centered at each of the regions above. For demonstration, we will assume that each region has some relative “attractiveness,” which is represented by the covariance in the normal distributions used to draw points. Specifically, as we go up and to the right, the covariance increases proportional to the distance from the lower right corner of the box.


[4]:






points = []
fractional_distances_to_corner = np.linalg.norm(box.make_fractional(spot_centers), axis=-1)
cov_basis = 20 * fractional_distances_to_corner
for i, p in enumerate(spot_centers):
    np.random.seed(i)
    cov = cov_basis[i]*np.diag([1, 1, 0])
    points.append(
        np.random.multivariate_normal(p, cov, size=(50,)))
points = box.wrap(np.concatenate(points))








[5]:






fig, ax = plot_lattice(box, spot_centers, spot_radius, ls="dashed", lw=2.5)
plt.tick_params(axis="both", which="both", labelsize=14)
add_patches(ax, points, radius, True, 'k', lw=None)
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.LocalDensity_7_0.png]




We see that the density decreases as we move up and to the right. In order to compute the actual densities, we can leverage the LocalDensity class. The class allows you to specify a set of query points around which the number of other points is computed. These other points can, but need not be, distinct from the query points. In our case, we want to use the blue regions as our query points with the small black dots as our data points.

When we construct the LocalDensity class, there are two arguments. The first is the radius from the query points within which particles should be included in the query point’s counter. The second is the circumsphere diameter of the data points, not the query points. This distinction is critical for getting appropriate density values, since these values are used to actually check cutoffs and calculate the density.


[6]:






density = freud.density.LocalDensity(spot_radius, radius)
density.compute(system=(box, points), query_points=spot_centers);








[7]:






fig, axes = plt.subplots(1, 2, figsize=(14, 6))

for i, data in enumerate([density.num_neighbors, density.density]):
    poly = np.poly1d(np.polyfit(cov_basis, data, 1))
    axes[i].tick_params(axis="both", which="both", labelsize=14)
    axes[i].scatter(cov_basis, data)
    x = np.linspace(*axes[i].get_xlim(), 30)
    axes[i].plot(x, poly(x), label="Best fit")
    axes[i].set_xlabel("Covariance", fontsize=16)

axes[0].set_ylabel("Number of neighbors", fontsize=16);
axes[1].set_ylabel("Density", fontsize=16);
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.LocalDensity_10_0.png]




As expected, we see that increasing the variance in the number of points centered at a particular query point decreases the total density at that point. The trend is noisy since we are randomly sampling possible positions, but the general behavior is clear.





          

      

      

    

  

    
      
          
            
  


freud.density.RDF: Accumulating g(r) for a Fluid

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of particles with other particles. This example demonstrates the calculation of the radial distribution function [https://en.wikipedia.org/wiki/Radial_distribution_function] \(g(r)\) for a fluid, averaged over multiple frames.


[1]:






import numpy as np
import freud
import matplotlib.pyplot as plt

data_path = "data/phi065"
box_data = np.load("{}/box_data.npy".format(data_path))
pos_data = np.load("{}/pos_data.npy".format(data_path))

def plot_rdf(box_arr, points_arr, prop, r_max=10, bins=100, label=None, ax=None):
    """Helper function for plotting RDFs."""
    if ax is None:
        fig, ax = plt.subplots(1, 1, figsize=(12, 8))
        ax.set_title(prop, fontsize=16)
    rdf = freud.density.RDF(bins, r_max)
    for box, points in zip(box_arr, points_arr):
        rdf.compute(system=(box, points), reset=False)
    if label is not None:
        ax.plot(rdf.bin_centers, getattr(rdf, prop), label=label)
        ax.legend()
    else:
        ax.plot(rdf.bin_centers, getattr(rdf, prop))
    return ax







Here, we show the difference between the RDF of one frame and an accumulated (averaged) RDF from several frames. Including more frames makes the plot smoother.


[2]:






# Compute the RDF for the last frame
box_arr = [box_data[-1].tolist()]
pos_arr = [pos_data[-1]]
ax = plot_rdf(box_arr, pos_arr, 'rdf', label='One frame')

# Compute the RDF for the last 20 frames
box_arr = [box.tolist() for box in box_data[-20:]]
pos_arr = pos_data[-20:]
ax = plot_rdf(box_arr, pos_arr, 'rdf', label='Last 20 frames', ax=ax)

plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.RDF-AccumulateFluid_3_0.png]




The difference between accumulate (which should be called on a series of frames) and compute (meant for a single frame) is more striking for smaller bin sizes, which are statistically noisier.


[3]:






# Compute the RDF for the last frame
box_arr = [box_data[-1].tolist()]
pos_arr = [pos_data[-1]]
ax = plot_rdf(box_arr, pos_arr, 'rdf', bins=1000, label='One frame')

# Compute the RDF for the last 20 frames
box_arr = [box.tolist() for box in box_data[-20:]]
pos_arr = pos_data[-20:]
ax = plot_rdf(box_arr, pos_arr, 'rdf', bins=1000, label='Last 20 frames', ax=ax)

plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.RDF-AccumulateFluid_5_0.png]








          

      

      

    

  

    
      
          
            
  


freud.density.RDF: Choosing Bin Widths

The freud.density module is intended to compute a variety of quantities that relate spatial distributions of particles with other particles. This example demonstrates the calculation of the radial distribution function [https://en.wikipedia.org/wiki/Radial_distribution_function] \(g(r)\) using different bin sizes.


[1]:






import numpy as np
import freud
import matplotlib.pyplot as plt








[2]:






# Define some helper plotting functions.
def plot_rdf(box, points, prop, r_max=3.5, bins_array=[20, 75, 3000]):
    """Helper function for plotting RDFs."""
    fig, axes = plt.subplots(1, len(bins_array), figsize=(16, 3))
    for i, bins in enumerate(bins_array):
        rdf = freud.density.RDF(bins, r_max)
        rdf.compute(system=(box, points))
        axes[i].plot(rdf.bin_centers, getattr(rdf, prop))
        axes[i].set_title("Bin width: {:.3f}".format(r_max/bins), fontsize=16)
    plt.show()







To start, we construct and visualize a set of points sitting on a simple square lattice.


[3]:






box, points = freud.data.UnitCell.square().generate_system(5, scale=2)
aq = freud.AABBQuery(box, points)
aq.plot(ax=plt.gca())
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.RDF-BinWidth_4_0.png]




If we try to compute the RDF directly from this, we will get something rather uninteresting since we have a perfect crystal. Indeed, we will observe that as we bin more and more finely, we approach the true behavior of the RDF for perfect crystals, which is a simple delta function.


[4]:






plot_rdf(box, points, 'rdf')












[image: ../../../_images/gettingstarted_examples_module_intros_density.RDF-BinWidth_6_0.png]




In these RDFs, we see two sharply defined peaks, with the first corresponding to the nearest neighbors on the lattice (which are all at a distance 2 from each other), and the second, smaller peak caused by the particles on the diagonal (which sit at distance \(\sqrt{2^2+2^2} \approx 2.83\).

However, in more realistic systems, we expect that the lattice will not be perfectly formed. In this case, the RDF will exhibit more features. To demonstrate this fact, we reconstruct the square lattice of points from above, but we now introduce some noise into the system.


[5]:






box, clean_points = freud.data.UnitCell.square().generate_system(10, scale=2, sigma_noise=0)
box, noisy_points = freud.data.UnitCell.square().generate_system(10, scale=2, sigma_noise=0.1)
aq_clean = freud.AABBQuery(box, clean_points)
aq_clean.plot(ax=plt.gca(), c='k', s=3)
aq_noisy = freud.AABBQuery(box, noisy_points)
deviations = np.linalg.norm(box.wrap(noisy_points-clean_points), axis=-1)
_, sc = aq_noisy.plot(ax=plt.gca(), c=deviations)
cbar = plt.colorbar(sc)
cbar.set_label('Distance from lattice site')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_density.RDF-BinWidth_9_0.png]





[6]:






plot_rdf(box, noisy_points, 'rdf')












[image: ../../../_images/gettingstarted_examples_module_intros_density.RDF-BinWidth_10_0.png]




In this RDF, we see the same rough features as we saw with the perfect lattice. However, the signal is much noisier, and in fact we see that increasing the number of bins essentially leads to overfitting of the data. As a result, we have to be careful with how we choose to bin our data when constructing the RDF object.

An alternative route for avoiding this problem can be using the cumulative RDF instead. The relationship between the cumulative RDF and the RDF is akin to that between a cumulative density and a probability density function, providing a measure of the total density of particles experienced up to some distance rather than the value at that distance. Just as a CDF can help avoid certain mistakes common to plotting a PDF, plotting the cumulative RDF may be helpful in some cases. Here, we see that
decreasing the bin size slightly alters the features of the plot, but only in very minor way (i.e. decreasing the smoothness of the line due to small jitters).


[7]:






plot_rdf(box, noisy_points, 'n_r')












[image: ../../../_images/gettingstarted_examples_module_intros_density.RDF-BinWidth_13_0.png]








          

      

      

    

  

    
      
          
            
  


freud.environment.AngularSeparation

The freud.environment module analyzes the local environments of particles. The freud.environment.AngularSeparation class enables direct measurement of the relative orientations of particles.


[1]:






import freud
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['axes.titlepad'] = 20
from mpl_toolkits.mplot3d import Axes3D
import rowan  # for quaternion math, see rowan.readthedocs.io for more information.







In order to work with orientations in freud, we need to do some math with quaternions. If you are unfamiliar with quaternions, you can read more about their definition [https://en.wikipedia.org/wiki/Quaternion] and how they can be used to represent rotations [https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation]. For the purpose of this tutorial, just consider them as 4D vectors, and know that the set of normalized (i.e. unit norm) 4D vectors can be used to represent
rotations in 3D. In fact, there is a 1-1 mapping between normalized quaternions and 3x3 rotation matrices. Quaternions are more computationally convenient, however, because they only require storing 4 numbers rather than 9, and they can be much more easily chained together. The rowan library (rowan.readthedocs.io [https://rowan.readthedocs.io/]) defines many useful operations using quaternions, such as the rotations of vectors using quaternions instead of matrices.


Neighbor Angles

One usage of the AngularSeparation class is to compute angles between neighboring particles. To show how this works, we generate a simple configuration of particles with random orientations associated with each point.


[2]:






uc = freud.data.UnitCell.sc()
box, positions = uc.generate_system(5)
N = len(positions)

# Generate random, correlated particle orientations by taking identity
# quaternions and slightly rotating them in a random direction
np.random.seed(0)
interpolate_amount = 0.2
identity_quats = np.array([[1, 0, 0, 0]] * N)
ref_orientations = rowan.interpolate.slerp(
    identity_quats, rowan.random.rand(N), interpolate_amount)
orientations = rowan.interpolate.slerp(
    identity_quats, rowan.random.rand(N), interpolate_amount)








[3]:






# To show orientations, we use arrows rotated by the quaternions.
ref_arrowheads = rowan.rotate(ref_orientations, np.array([1, 0, 0]))
arrowheads = rowan.rotate(orientations, np.array([1, 0, 0]))

fig = plt.figure(figsize=(12, 6))
ref_ax = fig.add_subplot(121, projection='3d')
ax = fig.add_subplot(122, projection='3d')
ref_ax.quiver3D(positions[:, 0], positions[:, 1], positions[:, 2],
                ref_arrowheads[:, 0], ref_arrowheads[:, 1], ref_arrowheads[:, 2])
ax.quiver3D(positions[:, 0], positions[:, 1], positions[:, 2],
            arrowheads[:, 0], arrowheads[:, 1], arrowheads[:, 2])
ref_ax.set_title("Reference orientations", fontsize=16)
ax.set_title("Orientations", fontsize=16)
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_environment.AngularSeparation_5_0.png]




We can now use the AngularSeparation class to compare the orientations in these two systems.


[4]:






# For simplicity, we'll assume that our "particles" are completely
# asymmetric, i.e. there are no rotations that map the particle
# back onto itself. If we had a regular polyhedron, then we would
# want to specify all the quaternions that rotate that polyhedron
# onto itself.
equiv_orientations = np.array([[1, 0, 0, 0]])
ang_sep = freud.environment.AngularSeparationNeighbor()
ang_sep.compute(system=(box, positions),
                orientations=orientations,
                query_points=positions,
                query_orientations=ref_orientations,
                equiv_orientations=equiv_orientations,
                neighbors={'num_neighbors': 12})

# Convert angles from radians to degrees and plot histogram
neighbor_angles = np.rad2deg(ang_sep.angles)
plt.hist(neighbor_angles)
plt.title('Histogram of angular separations between neighbors')
plt.xlabel('Angular separation (degrees)')
plt.ylabel('Frequency')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_environment.AngularSeparation_7_0.png]







Global Angles

Alternatively, the AngularSeparationGlobal class can also be used to compute the orientation of all points in the system relative to some global set of orientations. In this case, we simply provide a set of global quaternions that we want to consider. For simplicity, let’s consider \(180^\circ\) rotations about each of the coordinate axes, which have very simple quaternion representations.


[5]:






global_orientations = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
ang_sep = freud.environment.AngularSeparationGlobal()
ang_sep.compute(global_orientations, ref_orientations, equiv_orientations)
global_angles = np.rad2deg(ang_sep.angles)








[6]:






plt.hist(global_angles[:, 0])
plt.title('Histogram of angular separation relative to identity quaternion')
plt.xlabel('Angular separation (degrees)')
plt.ylabel('Frequency')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_environment.AngularSeparation_10_0.png]




As a simple check, we can ensure that for the identity quaternion \((1, 0, 0, 0)\), which performs a \(0^\circ\) rotation, the angles between the reference orientations and that quaternion are equal to the original angles of rotation of those quaternions (i.e. how much those orientations were already rotated relative to the identity).


[7]:






ref_axes, ref_angles = rowan.to_axis_angle(ref_orientations)
np.allclose(global_angles[:, 0], np.rad2deg(ref_angles), rtol=1e-4)








[7]:







True












          

      

      

    

  

    
      
          
            
  


freud.environment.BondOrder


Computing Bond Order Diagrams

The freud.environment module analyzes the local environments of particles. In this example, the freud.environment.BondOrder class is used to plot the bond order diagram (BOD) of a system of particles.


[1]:






import numpy as np
import freud
import matplotlib.pyplot as plt
import matplotlib
from mpl_toolkits.mplot3d import Axes3D








Setup

Our sample data will be taken from an face-centered cubic (FCC) structure. The array of points is rather large, so that the plots are smooth. Smaller systems may need to gather data from multiple frames in order to smooth the resulting array’s statistics, by computing multiple times with reset=False.


[2]:






uc = freud.data.UnitCell.fcc()
box, points = uc.generate_system(40, sigma_noise=0.05)







Now we create a BondOrder compute object and create some arrays useful for plotting.


[3]:






n_bins_theta = 100
n_bins_phi = 100
bod = freud.environment.BondOrder((n_bins_theta, n_bins_phi))

phi = np.linspace(0, np.pi, n_bins_phi)
theta = np.linspace(0, 2*np.pi, n_bins_theta)
phi, theta = np.meshgrid(phi, theta)
x = np.sin(phi) * np.cos(theta)
y = np.sin(phi) * np.sin(theta)
z = np.cos(phi)










Computing the Bond Order Diagram

Next, we use the compute method and the bond_order property to return the array.


[4]:






bod_array = bod.compute(system=(box, points), neighbors={'num_neighbors': 12}).bond_order
# Clean up polar bins for plotting
bod_array = np.clip(bod_array, 0, np.percentile(bod_array, 99))
plt.imshow(bod_array.T)
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_environment.BondOrder_7_0.png]







Plotting on a sphere

This code shows the bond order diagram on a sphere as the sphere is rotated. The code takes a few seconds to run, so be patient.


[5]:






fig = plt.figure(figsize=(12, 8))
for plot_num in range(6):
    ax = fig.add_subplot(231 + plot_num, projection='3d')
    ax.plot_surface(x, y, z, rstride=1, cstride=1, shade=False,
                    facecolors=matplotlib.cm.viridis(bod_array / np.max(bod_array)))
    ax.set_xlim(-1, 1)
    ax.set_ylim(-1, 1)
    ax.set_zlim(-1, 1)
    ax.set_axis_off()
    # View angles in degrees
    view_angle = 0, plot_num*15
    ax.view_init(*view_angle)
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_environment.BondOrder_9_0.png]







Using Custom Neighbors

We can also use a custom neighbor query to determine bonds. For example, we can filter for a range of bond lengths. Below, we only consider neighbors between \(r_{min} = 2.5\) and \(r_{max} = 3\) and plot the resulting bond order diagram.


[6]:






bod_array = bod.compute(system=(box, points), neighbors={'r_max': 3.0, 'r_min': 2.5}).bond_order
# Clean up polar bins for plotting
bod_array = np.clip(bod_array, 0, np.percentile(bod_array, 99))
plt.imshow(bod_array.T)
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_environment.BondOrder_11_0.png]












          

      

      

    

  

    
      
          
            
  


freud.environment.EnvironmentCluster

The freud.environment.EnvironmentCluster class finds and clusters local environments, as determined by the vectors pointing to neighbor particles. Neighbors can be defined by a cutoff distance or a number of nearest-neighbors, and the resulting freud.locality.NeighborList is used to enumerate a set of vectors, defining an “environment.” These environments are compared with the environments of neighboring particles to form spatial clusters, which usually correspond to grains, droplets, or
crystalline domains of a system. EnvironmentCluster has several parameters that alter its behavior, please see the documentation or helper functions below for descriptions of these parameters.

In this example, we cluster the local environments of hexagons. Clusters with 5 or fewer particles are colored dark gray.


[1]:






import numpy as np
import freud
from collections import Counter
import matplotlib.pyplot as plt

def get_cluster_arr(system, num_neighbors, threshold,
                    registration=False, global_search=False):
    """Computes clusters of particles' local environments.

    Args:
        system:
            Any object that is a valid argument to
            :class:`freud.locality.NeighborQuery.from_system`.
        num_neighbors (int):
            Number of neighbors to consider in every particle's local environment.
        threshold (float):
            Maximum magnitude of the vector difference between two vectors,
            below which we call them matching.
        global_search (bool):
            If True, do an exhaustive search wherein the environments of
            every single pair of particles in the simulation are compared.
            If False, only compare the environments of neighboring particles.
        registration (bool):
            Controls whether we first use brute force registration to
            orient the second set of vectors such that it minimizes the
            RMSD between the two sets.

    Returns:
        tuple(np.ndarray, dict): array of cluster indices for every particle
        and a dictionary mapping from cluster_index keys to vector_array)
        pairs giving all vectors associated with each environment.
    """
    # Perform the env-matching calcuation
    neighbors = {'num_neighbors': num_neighbors}
    match = freud.environment.EnvironmentCluster()
    match.compute(system, threshold, neighbors=neighbors,
                  registration=registration, global_search=global_search)
    return match.cluster_idx, match.cluster_environments

def color_by_clust(cluster_index_arr, no_color_thresh=1,
                   no_color='#333333', cmap=plt.get_cmap('viridis')):
    """Takes a cluster_index_array for every particle and returns a
    dictionary of (cluster index, hexcolor) color pairs.

    Args:
        cluster_index_arr (numpy.ndarray):
            The array of cluster indices, one per particle.
        no_color_thresh (int):
            Clusters with this number of particles or fewer will be
            colored with no_color.
        no_color (color):
            What we color particles whose cluster size is below no_color_thresh.
        cmap (color map):
            The color map we use to color all particles whose
            cluster size is above no_color_thresh.
    """
    # Count to find most common clusters
    cluster_counts = Counter(cluster_index_arr)
    # Re-label the cluster indices by size
    color_count = 0
    color_dict = {cluster[0]: counter for cluster, counter in
                  zip(cluster_counts.most_common(),
                      range(len(cluster_counts)))}

    # Don't show colors for clusters below the threshold
    for cluster_id in cluster_counts:
        if cluster_counts[cluster_id] <= no_color_thresh:
            color_dict[cluster_id] = -1
    OP_arr = np.linspace(0.0, 1.0, max(color_dict.values())+1)

    # Get hex colors for all clusters of size greater than no_color_thresh
    for old_cluster_index, new_cluster_index in color_dict.items():
        if new_cluster_index == -1:
            color_dict[old_cluster_index] = no_color
        else:
            color_dict[old_cluster_index] = cmap(OP_arr[new_cluster_index])

    return color_dict







We load the simulation data and call the analysis functions defined above. Notice that we use 6 nearest neighbors, since our system is made of hexagons that tend to cluster with 6 neighbors.


[2]:






ex_data = np.load('data/MatchEnv_Hexagons.npz')
box = ex_data['box']
positions = ex_data['positions']
orientations = ex_data['orientations']
aq = freud.AABBQuery(box, positions)

cluster_index_arr, cluster_envs = get_cluster_arr(
    aq, num_neighbors=6, threshold=0.2,
    registration=False, global_search=False)
color_dict = color_by_clust(cluster_index_arr, no_color_thresh=5)
colors = [color_dict[i] for i in cluster_index_arr]







Below, we plot the resulting clusters. The colors correspond to the cluster size.


[3]:






plt.figure(figsize=(12, 12), facecolor='white')
aq.plot(ax=plt.gca(), c=colors, s=20)
plt.title('Clusters Colored by Particle Local Environment')
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_environment.EnvironmentCluster_5_0.png]








          

      

      

    

  

    
      
          
            
  


freud.environment.LocalDescriptors: Steinhardt Order Parameters from Scratch

The freud.environment module analyzes the local environments of particles. The freud.environment.LocalDescriptors class is a useful tool for analyzing identifying crystal structures in a rotationally invariant manner using local particle environments. The primary purpose of this class is to compute spherical harmonics between neighboring particles in a way that orients particles correctly relative to their local environment, ensuring that global orientational shifts do not change the
output.


[1]:






import freud
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D








Computing Spherical Harmonics

To demonstrate the basic application of the class, let’s compute the spherical harmonics between neighboring particles. For simplicity, we consider points on a simple cubic lattice.


[2]:






uc = freud.data.UnitCell.sc()
box, points = uc.generate_system(5)
system = freud.AABBQuery(box, points)
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
system.plot(ax=ax)
ax.set_title("Simple cubic crystal", fontsize=16)
plt.show()












[image: ../../../_images/gettingstarted_examples_module_intros_environment.LocalDescriptors_4_0.png]




Now, let’s use the class to compute an array of spherical harmonics for the system. The harmonics are computed for each bond, where a bond is defined by a pair of particles that are determined to lie within each others’ nearest neighbor shells based on a standard neighbor list search. The number of bonds and spherical harmonics to calculate is configurable.


[3]:






num_neighbors = 6
l_max = 12

nlist = system.query(points, {'num_neighbors': num_neighbors, 'exclude_ii': True}).toNeighborList()
ld = freud.environment.LocalDescriptors(l_max, mode='global')
ld.compute(system, neighbors=nlist);










Accessing the Data

The resulting spherical harmonic array has a shape corresponding to the number of neighbors. We can now extract the spherical harmonics corresponding to a particular \((l, m)\) pair using the ordering used by the LocalDescriptors class: increasing values of \(l\), and for each \(l\), the nonnegative \(m\) values followed by the negative values.


[4]:






sph_raw = np.mean(ld.sph, axis=0)
count = 0
sph = np.zeros((l_max+1, l_max+1), dtype=np.complex128)
for l in range(l_max+1):
    for m in range(l+1):
        sph[l, m] = sph_raw[count]
        count += 1
    for m in range(-l, 0):
        sph[l, m] = sph_raw[count]
        count += 1










Using Spherical Harmonics to Compute Steinhardt Order Parameters

The raw per bond spherical harmonics are not typically useful quantities on their own. However, they can be used to perform sophisticated crystal structure analyses with different methods; for example, the pythia [https://pythia-learn.readthedocs.io/en/latest/] library uses machine learning to find patterns in the spherical harmonics computed by this class. In this notebook, we’ll use the quantities for a more classical application: the computation of Steinhardt order parameters. The order
parameters \(q_l\) provide a rotationally invariant measure of the system that can for some structures, provide a unique identifying fingerprint. They are a particularly useful measure for various simple cubic structures such as structures with underlying simple cubic, BCC, or FCC lattices. The freud library actually provides additional classes to efficiently calculate these order parameters directly, but they also provide a reasonable demonstration here.

For more information on Steinhardt order parameters, see the original paper [https://doi.org/10.1103/PhysRevB.28.784] or the freud.order.Steinhardt documentation [https://freud.readthedocs.io/en/latest/order.html#freud.order.Steinhardt].


[5]:






def get_ql(num_particles, descriptors, nlist, weighted=False):
    """Given a set of points and a LocalDescriptors object (and the
    underlying NeighborList), compute the per-particle Steinhardt ql
    order parameter for all :math:`l` values up to the maximum quantum
    number used in the computation of the descriptors."""
    qbar_lm = np.zeros((num_particles, descriptors.sph.shape[1]),
                       dtype=np.complex128)
    for i in range(num_particles):
        indices = nlist.query_point_indices == i
        Ylms = descriptors.sph[indices, :]
        if weighted:
            weights = nlist.weights[indices, np.newaxis]
            weights /= np.sum(weights)
            num_neighbors = 1
        else:
            weights = np.ones_like(Ylms)
            num_neighbors = descriptors.sph.shape[0]/num_particles
        qbar_lm[i, :] = np.sum(Ylms * weights, axis=0)/num_neighbors

    ql = np.zeros((qbar_lm.shape[0], descriptors.l_max+1))
    for i in range(ql.shape[0]):
        for l in range(ql.shape[1]):
            for k in range(l**2, (l+1)**2):
                ql[i, l] += np.absolute(qbar_lm[i, k])**2
            ql[i, l] = np.sqrt(4*np.pi/(2*l + 1) * ql[i, l])

    return ql

ld_ql = get_ql(len(points), ld, nlist)







Since freud provides the ability to calculate these parameter as well, we can directly check that our answers are correct. Note: More information on the ``Steinhardt`` class can be found in the documentation or in the ``Steinhardt`` example.


[6]:






L = 6
steinhardt = freud.order.Steinhardt(l=L)
steinhardt.compute(system, neighbors=nlist)
if np.allclose(steinhardt.ql, ld_ql[:, L]):
    print("Our manual calculation matches the Steinhardt class!")













Our manual calculation matches the Steinhardt class!






For a brief demonstration of why the Steinhardt order parameters can be useful, let’s look at the result of thermalizing our points and recomputing this measure.


[7]:






sigmas = [0.03, 0.05, 0.1]
systems = []
nlists = []
for sigma in sigmas:
    box, points = uc.generate_system(5, sigma_noise=sigma)
    system = freud.AABBQuery(box, points)
    systems.append(system)
    nlists.append(
        system.query(
            points, {'num_neighbors': num_neighbors, 'exclude_ii': True}
        ).toNeighborList()
    )








[8]:






fig = plt.figure(figsize=(14, 6))
axes = []
for i, v in enumerate(sigmas):
    ax = fig.add_subplot("1{}{}".format(len(sigmas), i+1), projection='3d')
    systems[i].plot(ax=ax)
    ax.set_title("$\sigma$ = {}".format(v), fontsize=16);
plt.show()
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If we recompute the Steinhardt OP for each of these data sets, we see that adding noise has the effect of smoothing the order parameter such that the peak we observed for the perfect crystal is no longer observable.


[9]:






ld_qls = []
for i, sigma in enumerate(sigmas):
    ld = freud.environment.LocalDescriptors(l_max, mode='global')
    ld.compute(systems[i], neighbors=nlists[i])
    ld_qls.append(get_ql(len(systems[i].points), ld, nlists[i]))








[10]:






fig, ax = plt.subplots()
for i, ld_ql in enumerate(ld_qls):
    lim_out = ax.hist(ld_ql[:, L], label="$\sigma$ = {}".format(sigmas[i]), density=True)
    if i == 0:
        # Can choose any element, all are identical in the reference case
        ax.vlines(ld_ql[:, L][0], 0, np.max(lim_out[0]), label='Reference')
ax.set_title("Histogram of $q_{L}$ values".format(L=L), fontsize=16)
ax.set_ylabel("Frequency", fontsize=14)
ax.set_xlabel("$q_{L}$".format(L=L), fontsize=14)
ax.legend(fontsize=14)
plt.show()
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This type of identification process is what the LocalDescriptors data outputs may be used for. In the case of Steinhardt OPs, it provides a simple fingerprint for comparing thermalized systems to a known ideal structure to measure their similarity.

For reference, we can also check these values against the Steinhardt class again.


[11]:






for i, (system, nlist) in enumerate(zip(systems, nlists)):
    steinhardt = freud.order.Steinhardt(l=L)
    steinhardt.compute(system, nlist)
    if np.allclose(steinhardt.particle_order, ld_qls[i][:, L]):
        print("Our manual calculation matches the Steinhardt class!")













Our manual calculation matches the Steinhardt class!
Our manual calculation matches the Steinhardt class!
Our manual calculation matches the Steinhardt class!












          

      

      

    

  

    
      
          
            
  


freud.interface.Interface


Locating Particles on Interfacial Boundaries

The freud.interface module compares the distances between two sets of points to determine the interfacial particles.


[1]:






import freud
import numpy as np
import matplotlib.pyplot as plt







To make a pretend data set, we create a large number of blue (-1) particles on a square grid. Then we place grain centers on a larger grid and draw grain radii from a normal distribution. We color the particles yellow (+1) if their distance from a grain center is less than the grain radius.


[2]:






np.random.seed(0)
system_size = 100
num_grains = 4
uc = freud.data.UnitCell.square()
box, points = uc.generate_system(num_replicas=system_size, scale=1)
_, centroids = uc.generate_system(num_replicas=num_grains, scale=system_size/num_grains)
system = freud.AABBQuery(box, points)
values = np.array([-1 for p in points])
grain_radii = np.abs(np.random.normal(size=num_grains**2, loc=5, scale=2))
for center, radius in zip(centroids, grain_radii):
    for i, j, dist in system.query(center, {'r_max': radius}):
        values[j] = 1
plt.figure(figsize=(9, 9))
system.plot(ax=plt.gca(), c=values, cmap='cividis', s=12)
plt.title('System of two particle types')
plt.show()
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This system is phase-separated because the yellow particles are generally near one another, and so are the blue particles.

We can use freud.interface.InterfaceMeasure to label the particles on either side of the yellow-blue boundary. The class can tell us how many points are on either side of the interface:


[3]:






iface = freud.interface.Interface()
iface.compute((box, points[values > 0]), points[values < 0], neighbors={'r_max': 1.5})

print('There are {} query points (blue) on the interface.'.format(iface.query_point_count))
print('There are {} points (yellow) on the interface.'.format(iface.point_count))













There are 856 query points (blue) on the interface.
There are 724 points (yellow) on the interface.






Now we can plot the particles on the interface. We color the outside of the interface dark blue and the inside of the interface yellow.


[4]:






plt.figure(figsize=(9, 9))

interface_values = np.zeros(len(points))
interface_values[np.where(values < 0)[0][iface.query_point_ids]] = -1
interface_values[np.where(values > 0)[0][iface.point_ids]] = 1

system.plot(ax=plt.gca(), c=interface_values, cmap='cividis', s=12)
plt.title('Particles on the interface between types')
plt.show()
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freud.order.Hexatic


Hexatic Order Parameter

The hexatic order parameter measures how closely the local environment around a particle resembles perfect \(k\)-atic symmetry, e.g. how closely the environment resembles hexagonal/hexatic symmetry for \(k=6\). The order parameter is given by:


\[\psi_k \left( i \right) = \frac{1}{n} \sum \limits_j^n e^{k i \theta_{ij